OXIDACIÓN DE 5-HIDROXIMETILFURFURAL PARA LA PRODUCCIÒN DE ÁCIDO 5-(HIDROXIMETIL)FURAN-2-CARBOXÍLICO USANDO CATALIZADORES HETEROGÉNEOS

  • Harold Roney Vergara Rodríguez Grupo de Catálisis, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia. Avenida Central del Norte 39-115, 150003, Tunja, Boyacá, Colombia.
  • Edna Ximena Aguilera Palacios Grupo de Catálisis, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia. Avenida Central del Norte 39-115, 150003, Tunja, Boyacá, Colombia.
  • José Jobanny Martínez Zambrano Grupo de Catálisis, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia. Avenida Central del Norte 39-115, 150003, Tunja, Boyacá, Colombia
Palabras clave: : Oxidación, 5-hidroximetilfurfural, ácido 5-(hidroximetil)furan-2-carboxílico, catálisis heterogénea

Resumen

El HMF, también conocido como 5-(hidroximetil)-2-furancarboxaldehído y 5-hidroximetilfurfural, se ha identificado en una gran variedad de procesos térmicos de calentamiento de alimentos tales como leche, jugos de frutas, bebidas y miel. La molécula de HMF tiene varias funcionalidades que surgen de la presencia de los grupos hidroxilo y aldehído, así como de un anillo de furano. La oxidación de 5-hidroximetilfurfural (HMF) a través de la oxidación de su grupo aldehído permite obtener ácido 5-hidroximetil-2 furancarboxílico (HMFCA) empleado como precursor del ácido 2,5 furandicarboxílico (FDCA), compuestos renovables utilizados en la síntesis de varios poliésteres. En esta revisión abarca los principales estudios que se han llevado a cabo para obtener el HMFCA por medio de la catálisis heterogénea.

Descargas

La descarga de datos todavía no está disponible.

Citas

M. Ventura, M. Aresta, A. Dibenedetto, “Selective Aerobic Oxidation of 5-(Hydroxymethyl)furfural to 5-Formyl-2-furancarboxylic Acid in Water”, ChemSusChem 9, 2016,1096–1100.

Y.Y. Gorbanev, S.K. Klitgaard, J.M. Woodley, C.H. Christensen, A. Riisager, “Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature”, ChemSusChem 2, 2009, 672–675.

F. Wang, Z. Zhang, “Cs-substituted tungstophosphate-supported ruthenium nanoparticles: An effective catalyst for the aerobic oxidation of 5-hydroxymethylfurfural into 5-hydroxymethyl-2-furancarboxylic acid”., J. Taiwan Inst. Chem. Eng 70, 2017, 1–6.

J. Zhang, J. Li, Y. Tang, L. Lin, M. Long, “Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass”, Carbohydr. Polym 130, 2014, 420–428.

T. Pasini, M. Piccinini, M. Blosi, R. Bonelli, S. Albonetti, N. Dimitratos, J.A.J. Lopez-Sanchez, M. Sankar, Q. He, C.C.J. Kiely, G.J.G. Hutchings, F. Cavani, “Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles”, Green Chem. 13, 2011, 2091–2099.

H. Abou-Yousef, E.B. Hassan, P. Steele, “Rapid conversion of cellulose to 5-hydroxymethylfurfural using single and combined metal chloride catalysts in ionic liquid”, J. Fuel Chem. Technol. 41, 2013, 214–222.

M.J. Climent, A. Corma, S. Iborra, “Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels”, Green Chem. 16, 2013, 516–547.

G. Rothenberg, “Catalysis: concepts and green applications”, John Wiley Sons, 2015.

R. Rinaldi, R. Palkovits, F. Schüth, “Depolymerization of Cellulose Using Solid Catalysts in Ionic Liquids” Zuschriften, Angew. Chemie. 47, 2008, 8167–8170.

A. Corma, S. Iborra, A. Velty, “Chemical Routes for the Transformation of Biomass into Chemicals”, Chem. Rev. 107 (6), 2007, 2411–2502.

F. Neaţu, R.S. Marin, M. Florea, N. Petrea, O.D. Pavel, V.I. Pârvulescu, “Selective oxidation of 5-hydroxymethyl furfural over non-precious metal heterogeneous catalysts”, Appl. Catal. B Environ. 180, 2016, 751–757.

A.S. Amarasekara, L.D. Williams, C.C. Ebede, “Mechanism of the dehydration of D -fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150 ° C : an NMR study”, Carbohydr. Res. 343, 2008, 3021–3024.

N.K. Gupta, S. Nishimura, A. Takagaki, K. Ebitani, “Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure”, Green Chem. 13, 2011, 824

E.F. Dunn, D.D.J. Liu, E.Y. Chen, “Role of N-heterocyclic carbenes in glucose conversion into HMF by Cr catalysts in ionic liquids”, Appl. Catal. A Gen. 460–461, 2013, 1–7.

E.S. Kang, D.W. Chae, B. Kim, Y.G. Kim, “Efficient preparation of dhmf and hmfa from biomass-derived hmf via a cannizzaro reaction in ionic liquids”, J. Ind. Eng. Chem. 18, 2012, 174–177.

X. Wan, C. Zhou, J. Chen, W. Deng, Q. Zhang, Y. Yang, Y. Wang, “Base-Free Aerobic Oxidation of 5-Hydroxymethyl-furfural to 2, 5-Furandicarboxylic Acid in Water Catalyzed by Functionalized Carbon Nanotube-Supported Au–Pd Alloy Nanoparticles”, Acs Catal. 4, 2014, 2175–2185.

K.R. Vuyyuru, P. Strasser, “Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis”, Catal. Today. 195, 2012, 144–154.

T.S. Hansen, I. Sádaba, E.J. García-Suárez, A. Riisager, “Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions”, Appl. Catal. A Gen. 456, 2013, 44–50.

W. Niu, D. Wang, G. Yang, J. Sun, M. Wu, Y. Yoneyama, N. Tsubaki, “Pt nanoparticles loaded on reduced graphene oxide as an effective catalyst for the direct oxidation of 5-hydroxymethylfurfural (HMF) to produce 2,5-furandicarboxylic acid (FDCA) under mild conditions”, Bull. Chem. Soc. Jpn. 87, 2014, 1124–1129.

M. Ferrandon, T. Krause, “Role of the oxide support on the performance of Rh catalysts for the autothermal reforming of gasoline and gasoline surrogates to hydrogen”, Appl. Catal. A Gen. 311, 2006, 135–145.

P. Verdeguer, N. Merat, A. Gaset, “Oxydation catalytique du HMF en acide 2, 5-furane dicarboxylique”, J. Mol. Catal. 85, 1993, 327–344.

S.E. Davis, L.R. Houk, E.C. Tamargo, A.K. Datye, R.J. Davis, “Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts”, Catal. Today. 160, 2011, 55–60.

S. Albonetti, T. Pasini, A. Lolli, M. Blosi, M. Piccinini, N. Dimitratos, J.A. Lopez-Sanchez, D.J. Morgan, A.F. Carley, G.J. Hutchings, F. Cavani, “Selective oxidation of 5-hydroxymethyl-2-furfural over TiO2-supported gold–copper catalysts prepared from preformed nanoparticles: Effect of Au/Cu ratio”, Catal. Today. 195, 2012, 120–126.

O. Casanova, S. Iborra, A. Corma, “Biomass into chemicals: Aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts, ChemSusChem. 2, 2009, 1138–1144.

Z. Miao, Y. Zhang, X. Pan, T. Wu, B. Zhang, J. Li, T. Yi, Z. Zhang, X. Yang, “Superior catalytic performance of Ce1−xBixO2−δ solid solution and Au/Ce1−xBixO2−δ for 5-hydroxymethylfurfural conversion in alkaline aqueous solution”, Catal. Sci. Technol. 5, 2015, 1314–1322.

A. Lolli, S. Albonetti, L. Utili, R. Amadori, F. Ospitali, C. Lucarelli, F. Cavani, “Insights into the reaction mechanism for 5-hydroxymethylfurfural oxidation to FDCA on bimetallic Pd-Au nanoparticles”, Appl. Catal. A Gen. 504, 2015, 408–419

Z. Zhang, B. Liu, K. Lv, J. Sun, K. Deng, Aerobic oxidation of biomass derived 5-hydroxymethylfurfural into 5-hydroxymethyl-2-furancarboxylic acid catalyzed by a montmorillonite K-10 clay immobilized molybdenum acetylacetonate complex, Green Chem. 16, 2014, 2762.

L. Delannoy, N. Weiher, N. Tsapatsaris, A.M. Beesley, L. Nchari, S.L.M. Schroeder, C. Louis, “Reducibility of supported gold (III) precursors: Influence of the metal oxide support and consequences for CO oxidation activity”, Top. Catal. 44, 2007, 263–273.

Y.G. Wang, Y. Yoon, V.A. Glezakou, J. Li, R. Rousseau, “The role of reducible oxide-metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics”, J. Am. Chem. Soc. 135, 2013, 10673–10683.,

S. Albonetti, A. Lolli, V. Morandi, A. Migliori, C. Lucarelli, F. Cavani, “Conversion of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over Au-based catalysts: Optimization of active phase and metal–support interaction”, Appl. Catal. B Environ. 163, 2015, 520–530.

J. An, G. Sun, and H. Xia “Aerobic Oxidation of 5‑Hydroxymethylfurfural to High-Yield 5‑Hydroxymethyl-2-furancarboxylic Acid by Poly(vinylpyrrolidone)-Capped Ag Nanoparticle Catalysts” ACS Sustainable Chem. Eng.7, 2019, 6696−6706

H. Xia, J. An, M. Hong, S. Xu, L. Zhang, S. Zuo “Aerobic oxidation of 5-hydroxymethylfurfural to 2,5-difurancarboxylic acid over Pd-Au nanoparticles supported on Mg-Al hydrotalcite”, Catalysis Today 319, 2018, 113-120.

T.Muñoz, LY.Rache, HA.Rojas, GP Romanelli, JJ. Martinez, R. Luque “Production of 5-Hydroxymethyl-2-Furan Carboxylic Acid by Serratia marcescens from Crude 5-Hydroxymethylfurfural”, Biochemical Engineering Journal 107421, 2019, 1 – 20.

D. T. Muñoz Castiblanco, “Obtención de ácido 5-Hidroximetil-2-Furancarboxílico (HMFCA) a partir de 5-Hidroximetilfurfural (5-HMF) con microorganismos aislados de bagazo de caña”. (Tesis de maestría). 2019. Universidad Pedagógica y Tecnológica de Colombia, Tunja. Disponible en: http://repositorio.uptc.edu.co/handle/001/2499.

E, X Aguilera Palacios, “Estudio de sistemas bifuncionales para la obtención de 5-(Hidroximetil)-2-Furaldehído y Ácido 5-(Hidroximetil)Furan-2-Carboxílico”. (Tesis de Maestría). 2017. Universidad Pedagógica y Tecnológica de Colombia, Tunja. Disponible en: http://repositorio.uptc.edu.co/handle/001/2583.

Publicado
2020-06-25
Cómo citar
Vergara Rodríguez, H. R., Aguilera Palacios, E. X., & Martínez Zambrano, J. J. (2020). OXIDACIÓN DE 5-HIDROXIMETILFURFURAL PARA LA PRODUCCIÒN DE ÁCIDO 5-(HIDROXIMETIL)FURAN-2-CARBOXÍLICO USANDO CATALIZADORES HETEROGÉNEOS. Investigación Joven, 7(1), 12-15. Recuperado a partir de https://revistas.unlp.edu.ar/InvJov/article/view/10125