Reacciones multicomponente en la síntesis de pirroles a través de procesos de bajo impacto ambiental

  • Yeniffer Usuriaga Mulato Biotecnología, Calidad Medioambiental y Seguridad Agroalimentaria (BICAMSA), Popayán, Departamento de Química, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Campus Tulcán (190003) Popayán
  • Omar Miguel Portilla Zúñiga Universidad Nacional de La Plata http://orcid.org/0000-0003-3740-8424
Palabras clave: Reacciones Multicomponente, Pirroles, Química Verde, Eficiencia Atómica

Resumen

Los pirroles son compuestos heterocíclicos que han ganado gran importancia en los últimos años, debido a sus propiedades biológicas y químicas, que permiten su aplicación en diversas áreas industriales y farmacológicas. Debido a su potencial uso, se han seguido diversas rutas de síntesis para la obtención de estos compuestos, buscando un bajo impacto ambiental y siguiendo las vías  de  la química verde; por lo cual, en esta revisión se estudiarán diversas reacciones multicomponentes (RMC), como una herramienta eficiente para la obtención de pirroles

Descargas

La descarga de datos todavía no está disponible.

Citas

A.L Harreus, “Wiley-VCH Verlag GmbH& Co. KGaA: Weinheim” Ullman´sencyclopedia of industrial chemistry; 30, 2000, 615-618.

K.C, “Majumdar, S.K. Chattopadhyay” Pyrrole and Its Derivatives, in Heterocycles in Natural Product Synthesis; K. C. Majumdar and S. K. Chattopadhyay, Eds.; Wiley-VCH VerlagGmbH& Co. KGaA: Weinheim, 2011, 187-220.

C. Teixeira, F. Barbault, J. Rebehmed, K. Liu, L. Xie, H. Lu, S. Jiang, B. Fan, and F. Maurel, “Molecular modelingstudies of N-substituted pyrrole drivatives-Potential HIV-1 gp41 inhibitors”, Bioorg. Med. Chem. 16, 2008, 3039-3048.

V. Bhardwaj, D. Gumber, V. Abbot, S. Dhiman, and P. Sharma, “Pyrrole: A resourcefulsmallmolecule in key medicinal hetero-aromatics” 5, RSC Adv. , 2015, 15233-15266.

R. P. Wurz, and A. B. Charette, “Doubly Activated Cyclopropanes as Synthetic Precursors for the Preparation of 4-Nitro- and 4-Cyano-dihydropyrroles and Pyrroles” 12, Org. Lett., 2005, 2313-2316.

J.J. Li, “Heterocyclic chemistry in drug discovery”, Jhon Wiley & Sons: New York, 2013.

K. H. Cheon, J. Cho, Y. Kim, and D.S. Chung, “Thin film transistor gas sensorsincorporating high mobilitydiketopyrrolopyrole-basedpolymeric semiconductor doped with graphene oxide”, ACS Appl. Mater. Interfaces 25, 2015, 14004–14010.

T. Yao, C. Wang, J. Wu, Q. Lin, H. Lv, K. Zhang, K. Yu, and B. Yang, “Preparation of rapsberry-like polypirrolecomposites with applications in Catalysis”, J. Colloid Interface Sci. 2, 2009, 573-577.

O. Krim, M. Bouachrine, B. Hammouti, A. Elidirissi, and M. Hamidi, “2,5-Difuryl-N-methylpyrrole as corrosioninhibitor for Steel in 1M HCl”, Portugaliae Electrochimica Acta 26, 2008, 283-289.

M. Ash, and I. Ash, “Synapse information resources” Handbook of preservatives 1, 2004.

H. Wong, C. Ko, W. Lam, N. Zhu, and V. Wing-Wah, “Design and synthesis of new class of photochromicdiarylethene-containingdithieno[3,2-b:2´,3´d]pyrroles and theirswitchableluminescenceproperties”, Chem. Eur. J. 15, 2009, 10005-10009.

K. D. Bhatt, D. J. Vyas, B.A. Makwana, S.M Darjee, and V.K. Jain, “Highly stable water dispersable calyx [4]pyrroleocta-hydrazideprotected gold nanoparticles as colorimetric and fluorometric chemosensors for selectives ignaling of Co(II) ions”, Spectrochim. Acta, Part A 121 ,2014, 94-100.

S.F. Wang, C.L. Guo, K.K. Cui, Y.T. Zhu, J.X. Ding, X.Y. Zou, and Y.H. Li, “Lactidacid as an invaluable Green solvent for ultrasound-assisted scalable synthesis of pyrrole derivatives”, Ultrason. Sonochem. 26, 2015, 81-86.

T. Vivekanand, P. Vinoth, B. Agieshkumar, N. Sampath, A. Sudalai, J.C. Menéndez, and V. Sridharan, “Highly efficient regioselective synthesis of pyrrolesvia a tándem enamineformation – Michael addition- cyclizationsequence under catalyst- and solvent-free conditions”, Green Chem. 17, 2015, 3415-3423.

A. Herath, and N. D. P. Cosford, “One-step continuos flow synthesis of highlysubstituted pyrrole-3-carboxylic acid derivatives via in situ hydrolysis of tet-Butylesters” 12, Org. Lett., 2010, 5182-5185.

J.J. Li, Name Reactions, 4 th Ed.; Springer Berlín Heidelberg: Berlín, 2009.

V. Estévez, M. Villacampa, and J.C. Menéndez, “Multicomponent reactions for the synthesis of pyrroles”, Chem. Soc. Rev. 39, 2010, 4402-4421.

A. Domling, and I. Ugi, “Multicomponent reactions with isocyanides”, Angew. Chem. 39, 2000, 3168-3210.

Z. Wang, “Comprehensive Organic Name Reactions and Reagents” Jhon Wiley & Sons: New York, 2009.

M.W. Roomi, S.F. MacDonald, “The Hantzsch pyrrole synthesis”, Can. J. Chem. 48, 1970, 1689 – 1697.

P. T. Anastas, and J. C. Warner, “Green Chemistry: Theory and Practice”, Oxford University Press: New York, 1998, 30.

A.W. Trautwein, R.D. Sübmuth, and G. Jung, “Hantzsch pyrrole synthesis on solidsupport”, Bioorg. Med. Chem. Lett. 8, 1998, 2381-2384.

A.W. Trautwein, and G. Jung, “Solid-phase synthesis of pyrroles from enaminones and nitroalkenes”, Tetrahedron Lett. 39, 1998, 8263-8266.

G. Jas, and A. Kirschning, “Continuous flotechniques in orgnic synthesis”, Chem. Eur. J. 9, 2003, 5708-5723.

A. Herath, and N.D.P. Cosford, “One-stepcontinuousflo synthesis of highkysustituted pyrrole-3-carboxylic acid derivatives via in situ hydrolysis of tert-butylesters”, Org. Lett. 12, 2010, 5182-5185.

A. Pashkova, and L. Greiner, “Towardssmall-scale continuos Chemical production: Technology gaps and challenges”, Chem. Ing. Tech. 9, 2011, 1337-1342.

V.Estévez, M. Villacampa, and C. Menéndez, “Recent advances in the synthesis of pyrroles by multicomponent reactions”, Chem. Soc. Rev.13, 2014, 4633-4657.

S.N. Murthy, B. Madhav, A.V. Kumar, K.R. Rao, and Y.V.D. Nageswar, “Multicomponent approach towards the synthesis of subtitutedpyrroles under supramolecular catalysis using β-cyclodextrin as a catalyst in water under neutral conditions”, Helv. Chim. Acta 92, 2009, 2118-2124.

T.A. Moss, and T. Nowak, “Synthesis of 2,3-dicarbonylated pyrroles and furansvia the three-component Hantzsch reaction”, Tetrahedron Lett. 53,

2012, 3056-3060.

B. Eftekhari-Sis, and S. Vahdati-Khajeh, “Ultrasound-assisted Green synthesis of pyrroles and pyridazines in water viathree-component condensation reactions of arylglyoxals”, Curr. Chem. Lett.2, 2013, 85-92.

V. Estévez, M. Villacampa, and J.C. Menéndez, “Three-componentacces to pyrroles promoted by the CAN-Silver nitrate system under high-speed vibration milling conditions: a generalization of the Hantzsch pyrrole synthesis”, Chem. Commun. 49, 2013, 591-593.

V. Estévez, M. Villacampa, and C. Menéndez, “Concise synthesis of atorvastatinelactone under high-speed vibration milling conditions, Org. Chem. Front. 1, 2014, 458-463.

V. Estévez, V. Sridharan, S. Sabaté, M. Villacampa, and J.C. Menéndez, “ Three-component synthesis of pyrrole-related nitrogen heterocycles via a Hantzsch-type process: Comparison between conventional and high-speed vibration milling conditions”, Asian J. Org. Chem., 2016, doi: 10.1002/ajoc.201600061

F. MatloubiMoghaddam, Z. Mirjafary, S. Motamen, and M. JebeliJavan, “Efficient synthesis of highly substituted pyrroles via a multi-componentreaction using ZnO nanoparticles as a nanocatalyst”, Sci. Iran. 22, 2015, 948-953.

I. Yavari, E. Kowsari, “Effcient and green synthesis of tetrasubstituted pyrroles promoted by task-specific basic ionic liquids as catalyst in aqueous media”, Mol. Divers. 4, 2009, 519-528.

M. Sabbaghan, and A. Ghalaei, “Catalyst application of ZnO nanoestructures in solvent free synthesis of polysubstituted pyrroles”, J. Mol. Liq. 193, 2014, 116-122.

L. Nagarapu, R. Mallepalli, L. Yeramanchi, and R. Bantu, “Polyethyleneglycol (PEG-400) as anefficient and recyclable reaction medium for one-pot synthesis of polysubstituted pyrroles under catalyst-free conditions”, Tetrahedron Lett. 52, 2011, 3401-3404.

X. Feng, Q. Wang, W. Lin, G.L. Dou, Z.B. Huang, and D.Q. Shi, “Highly efficient synthesis of polysubstituted pyrroles via four component domino reaction”, Org. Lett. 15, 2013, 2542-2545.

Publicado
2016-09-07
Cómo citar
Usuriaga Mulato, Y., & Portilla Zúñiga, O. M. (2016). Reacciones multicomponente en la síntesis de pirroles a través de procesos de bajo impacto ambiental. Investigación Joven, 3(1). Recuperado a partir de https://revistas.unlp.edu.ar/InvJov/article/view/2647
Sección
Recopilaciones temáticas