Effect of electrochemically activated water addition to the drinking water of feedlot cattle of Buenos Aires province

Authors

  • Karina Pellicer
  • Victoria Brusa
  • Julián de la Torre
  • Diego Real
  • María Pía Silvestrini
  • Corina Bainotti
  • Oscar Osella
  • Julio Copes

DOI:

https://doi.org/10.24215/15142590e020

Keywords:

electroactivated water, feedlot, cattle, E. coli, Salmonella spp., growth promoter

Abstract

The general objective of the work was to evaluate the consumption of electroactivated water (AE) in feedlot cattle; the particular objectives were: 1. to determine the presence of E. coli O157 and Salmonella spp. in feces and 2. determine its efficiency as a promoter of growth. One hundred and fifty animals were grouped into 4 lots (L). The L1 was treated with 0.3 %, 1.5 % and 3.0 % of EAW; L2 with 0.3 % and 1.5 %; L3 with 0.3 % and L4 was not treated. In each of the 4 visits to the feedlot the animals were weighed and fecal samples were taken. Also, in the 4th visit, blood samples were taken. Fecal samples were analyzed to determine the presence of E. coli O157 and Salmonella spp. In the blood samples, pH, bicarbonate, sodium, potassium, chlorine, and total hemoglobin were determined. Data were analyzed using Infostat software. With respect to weight gain, tendency in favor of L2 and L3 after 60 days of treatment could be due to the growth promoter effect of EAW consumption. Fecal samples were positive for E. coli O157 in 3.3% for L2 at 60 days, and for Salmonella spp. in 3.3% and 1.6% for L3 and L4 after 90 days of treatment, respectively. No alterations were observed in the reference values of the evaluated blood parameters. The addition of EAW to the drinking water of feedlot cattle could be used as a growth promoter.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abol­Enein H, Gheith OA, Barakat N, Nour E, Sharaf AE. 2009. Ionized alkaline water: new strategy for management of metabolic acidosis in experimental animals. Therapeutic Apheresis and Dialysis. 13(3):220­4. doi: 10.1111/j.1744­9987.2009.00659.x

Abu Aboud OA, Adaska JM, Williams DR, Rossitto PV, Champagne JD, Lehenbauer TW, Atwill R, Li X, Aly SS. 2016. Epidemiology of Salmonella sp. in California cull dairy cattle: prevalence of fecal shedding and diagnostic accuracy of pooled enriched broth culture of fecal samples. PeerJ. 30(4):e2386. doi: 10.7717/peerj.2386

Agga GE, Arthur TM, Schmidt JW, Wang R, Brichta­Harhay DM. 2016. Diagnostic accuracy of rectoanal mucosal swab of feedlot cattle for detection and enumeration of Salmonella enterica. Journal of Food Protection. 79(4):531­7. doi: 10.4315/0362­028X.JFP­15­409

Bartholomew ML, Heffernan RT, Wright JG, Klos RF, Monson T, Khan S, Trees E, Sabol A, Willems RA, Flynn R, Deasy MP, Jones B, Davis JP. 2004. Multistate outbreak of Salmonella enterica serotype enteritidis infection associated with pet guinea pigs. Vector­Borne and Zoonotic Diseases. 14(6):414­21. doi: 10.1089/vbz.2013.1506

Bartolomé D, Posado R, Rodríguez L, Bueno F, Olmedo S, García JJ, Martín­Diana AB. 2011. Efecto higienizante del agua electrolizada sobre el agua de bebida y la calidad higiénico sanitaria de la leche. AIDA, XIV Jornadas sobre Producción Animal. Zaragoza. España. Tomo I:16­18.

Biruhtesfa A, Degmawi P, Mesele A, Genene T, Dereje H, Surafel K, Kebede A. 2017. Occurrence of Escherichia coli O157:H7 in cattle feces and contamination of carcass and various contact surfaces in abattoir and butcher shops of Hawassa, Ethiopia. BioMed Central Microbiology. 17:24. doi: 10.1186/s12866­017­0938­1

Botta C, Ferrocino I, Cavallero MC, Riva S, Giordano M, Cocolin L. 2018. Potentially active spoilage bacteria community during the storage of vacuum packaged beefsteaks treated with aqueous ozone and electrolyzed water. International Journal of Food Microbiology. 266:337­45. doi: 10.1016/j.ijfoodmicro.2017.10.012

Bouchrif B, Le Hello S, Pardos M, Karraouan B, Perrier­Gros­Claude JD, Ennaji MM, Timinouni M, Weill FX. 2009. Ceftazidime­resistant Salmonella enterica, Morocco. Emerging Infectious Diseases. 15(10):1693­5. doi: 10.3201/eid1510.090247

Caprioli A, Morabito S, Brugere H, Oswald E. 2005. Enterohaemorrhagic Escherichia coli: emerging issues on virulence and modes of transmission. Veterinary Research. 36(3): 289­311. doi: 10.1051/vetres:2005002

Código alimentario argentino (Ley N° 18284/69), artículo 255. Capítulo VI. Alimentos cárneos y afines. CAA. Disponible en: http://www.anmat.gov.ar/alimentos/codigoa/Capitulo_VI_2017.pdf. Fecha de acceso: 20­12­17

Dargatz DA, Kopral CA, Erdman MM, FedorkaCray PJ. 2016. Prevalence and antimicrobial resistance of Salmonella isolated from cattle feces in United States feedlots in 2011. Goodborne Pathogen and Disease. 13(9):483­9. doi: 10.1089/fpd.2016.2128

Dean­Nystrom EA, Bosworth BT, Cray WC Jr, Moon HW. 1997. Pathogenicity of Escherichia coli O157:H7 in the intestines of neonatal calves. Infection and Immunity. 65(5):1842­8.

D'Amico, T. 2003. The drinking water facts. Health_BioNatural_The_Drinking_Water_FACT S.pdf. Disponible en: http://members.iinet.net.au/~sambrod/ . Fecha de acceso: 19/12/17.

Ekong PS, Sanderson MW, Cernicchiaro N. 2015. Prevalence and concentration of Escherichia coliO157 in different seasons and cattle types processed in North America: A systematic review and meta­analysis of published research. Preventive Veterinary Medicine. 121(1­2):74­85. doi: 10.1016/j.prevetmed.2015.06.019

Envirolife. Instalación del primer equipo de Aguas Electroactivadas en Catamarca. Disponible en: http://envirolife.com.ar/aguas­electroactivadasequipo/. Fecha de acceso: 19­12­17

European Food Safety Authority (EFSA). Scientific report of EFSA. 2009. Technical specifications for the monitoring and reporting of verotoxigenic Escherichia coli (VTEC) on animals and food (VTEC surveys on animals and food). doi: 10.2903/j.efsa.2009.1366

Ferens WA, Hovde CJ. 2011. Escherichia coliO157:H7: animal reservoir and sources of human infection. Foodborne Pathogen and Disease. 8(4): 465­87. doi: 10.1089/fpd.2010.0673

Ferguson JD, Remsberg D, Wu Z. 2008. Influence of electrolyzed alkaline water on milk production in dairy cows. Journal of Animal Science. 91:609.

Fey PD, Safranek TJ, Rupp ME, Dunne EF, Ribot E, Iwen PC, Bradford PA, Angulo FJ, Hinrichs SH. 2000. Ceftriaxone­resistant Salmonella infection acquired by a child from cattle. The New England Journal of Medicine. 342(17):1242­9. doi: 10.1056/NEJM200004273421703

FSIS. 2017. Directive 7120.1. Rev. 43. Safe and suitable ingredients used in the production of meat, poultry, and egg products.

Herikstad H, Motarjemi Y, Tauxe RV. 2002. Salmonella surveillance: a global survey of public health serotyping. Epidemiology & Infection. 129(1):1­8. doi: 10.1017/S0950268802006842

Holcroft JJMS. 2003. Effect of anolyte on broiler performance. Tesis de Maestría de Filosofía. Universidad de Stellenbosch. South Africa. Hughes P, Heritage J. Antibiotic growthpromoters in food animals. Disponible en: http:// www.fao.org/docrep/ARTICLE/AGRIPPA/555_EN.HTM. Fecha de acceso: 19­12­17.

Ichinohe T, Gotou M, Fujihara T. 2004. Influences of basic electrolyzed water on water absorption, ruminal environment, microbial yield and nitrogen balance in sheep. Animal Science Journal. 75: 67­76.

Inagaki H, Shibata Y, Obata T, Kawagoe M, Ikeda K, Sato M, Toida K. 2011. Effects of slightly acidic electrolysed drinking water on mice. Laboratory Animals, 45(4):283­5. doi: 10.1258/la.2011.010122

Karmali MA, Gannon V, Sargeant JM. 2010. Verocytotoxin­producing Escherichia coli (VTEC). Veterinary Microbiology. 140(3­4):360­70. doi: 10.1016/j.vetmic.2009.04.011

Leotta GA, Chinen I, Epszteyn S, Miliwebsky E, Melamed IC, Motter M. 2005. Validation of a multiplex PCR for detection of Shiga toxinproducing Escherichia coli. Revista Argentina de Microbiología. 37(1):1­10.

Morita C, Nishida T, Ito K. 2011. Biological toxicity of acid electrolyzed functional water: Effect of oral administration on mouse digestive tract and changes in body weight. Archives Oral Biology. 56(4):359­66. doi: 10.1016/j.archoralbio.2010.10.016

Narváez­Bravo C, Miller MF, Jackson T, Jackson S, Rodas­Gonzalez A, Pond K, Echeverry A, Brashears MM. 2013. Salmonella and Escherichia coli O157:H7 prevalence in cattle and on carcasses in a vertically integrated feedlot and harvest plant in Mexico. Journal of Food Protection. 76(5):786­95. doi: 10.4315/0362­028X.JFP­12­079

O’Brien SB, Duffy G, Carney E, Sheridan JJ, McDowell DA, Blair IS. 2005. Prevalence and numbers of Escherichia coli O157 on bovine hides at a beef slaughter plant. Journal of Food Protection. 68(4):660­5.

Paiba GA, Gibbens JC, Pascoe SJ, Wilesmith JW, Kidd SA, Byrne C, Ryan JB, Smith RP, McLaren M, Futter RJ, Kay AC, Jones YE, Chappell SA, Willshaw GA, Cheasty T. 2002. Faecal carriage of verocytotoxin­producing Escherichia coli O157 in cattle and sheep at slaughter in Great Britain. Veterinary Record. 150(19): 593­8.

Perry JJ, Yousef AE. 2011. Decontamination of raw foods using ozone­based sanitization techniques. Annual Review of Food Science and Technology. 2: 281­98. doi: 10.1146/annurev­food­022510­133637

Ramoneda M, Foncuberta M, Simón M, Sabaté S, Herrera S, Landa B, Musté N, Martí R, Trabado V, Carbonell O, Vila M, Espelt M, Ramírez B, Durán J. 2013. Prevalence of verotoxigenic Escherichia coli O157 (VTEC O157) and compliance with microbiological safety standards in bovine carcasses from an industrial beef slaughter plant. Letter in Applied Microbiology. 56(6):408­13. doi: 10.1111/lam.12062

Roy R, Higgins R, Fortin M, Tardif S. 2001. Salmonella give infection in 2 dairy herds. Canadian Veterinay Journal. 42(6):468­70.

Smith AB, Renter DG, Cernicchiaro N, Shi X, Nagaraja TG. 2016. Prevalence and quinolone susceptibilities of Salmonella isolated from the feces of preharvest cattle within feedlots that used a fluoroquinolone to treat bovine respiratory disease. Foodborne Pathogen and Disease. 13(6): 303­8. doi: 10.1089/fpd.2015.2081

Surdu I, Vatuiu I, Jurcoane S, Ciocîrlan A. 2008. Modern methods ensuring sanitary veterinary protection for animal farms, based on using of electrolyzed water. 7th International Symposium of Animal Nutrition and Biology. Balotesti. Rumania. 25­26 September. Disponible en: http://www.envirolytecanada.com/wp­content/uploads/2015/03/EnvrioNize­Envirolyte­Poultry­CaseStudy­Abstract­Modern­methods­sanitaryveterinary­protection­using­ELECTROLYZEDWATER­Romania­s.pdf. Fecha de acceso: 19­12­17

Tabernero de Paz MJ, Bodas R, Bartolomé D, Posado R, García JJ, Olmedo S. 2013. Agua electrolizada como higienizante en producción animal: efectos en sanidad y productividad. Revista Archivos de Zootecnia. 62(R):13­23.

Venkitanarayanan KS, Ezeike GO, Hung YC, Doyle MP. 1999. Efficacy of electrolyzed oxidizing water for inactivating Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes. Applied and Environmental Microbiology. 65(9):4276­9.

Wray C, Wary A. 2000. Salmonella in domestic animals. Wallingford, CABI Publishing.

Yanagihara T, Arai K, Miyamae K, Sato B, Shudo T, Yamada M, Aoyama M. 2005. Electrolyzed hydrogen­saturated water for drinking use elicits an antioxidative effect: a feeding test with rats. Bioscience Biotechnology Biochemistry. 69(10): 1985­7. doi: 10.1271/bbb.69.1985

Published

2018-06-21

How to Cite

Pellicer, K., Brusa, V., de la Torre, J., Real, D., Silvestrini, M. P., Bainotti, C., Osella, O., & Copes, J. (2018). Effect of electrochemically activated water addition to the drinking water of feedlot cattle of Buenos Aires province. Analecta Veterinary, 38(1), 9–15. https://doi.org/10.24215/15142590e020

Issue

Section

Research Articles

Most read articles by the same author(s)