Toxina épsilon de Clostridium perfringens y su rol en la Enterotoxemia
DOI :
https://doi.org/10.24215/15142590e096Mots-clés :
toxina épsilon, Clostridium perfringens, enterotoxemia , diagnóstico, prevenciónRésumé
La toxina épsilon es una proteína reconocida por ser la tercera más potente dentro del género Clostridium, que forma parte de un grupo de bacterias anaerobias cosmopolitas productoras de toxinas. Epsilon pertenece al grupo de las toxinas formadoras de poros y es sintetizada en forma de protoxina relativamente inactiva, por los toxinotipos B y D de Clostridium perfringens. La protoxina se activa por clivaje proteolítico en intestino y es responsable de la enterotoxemia, una toxiinfección de curso agudo o subagudo que se caracteriza por la rapidez con que mata a los animales afectados, principalmente pequeños rumiantes.
Este artículo describe las principales toxinas asociadas a C. perfringens y se centra en la estructura, mecanismo de acción y rol de la toxina épsilon en el desarrollo de enterotoxemias. También se discuten alternativas de diagnóstico, control y prevención inmunoprofiláctica, junto con los candidatos vacunales experimentales descriptos hasta el presente.
Références
Abdolmohammadi Khiav L, Zahmatkesh A. 2021. Vaccination against pathogenic clostridia in animals: a review. Tropical Animal Health and Production. 53(2):284. https://doi.org/10.1007/s11250-021-02728-w
Adamson RH, Fernandez-Miyakawa M, Ochi S, Sakurai J, Uzal F, Curry FE. 2005. Clostridium perfringens epsilon-toxin increases permeability of single perfused microvessels of rat mesentery. Infection and Immunity. 73(8):4879-87. https://doi.org/10.1128/IAI.73.8.4879-4887.2005
Alves GG, Machado de Ávila RA, Chávez-Olórtegui CD, Lobato FCF. 2014. Clostridium perfringens epsilon toxin: the third most potent bacterial toxin known. Anaerobe. 30:102-7. https://doi.org/10.1016/j.anaerobe.2014.08.016
Ballard J, Crabtree J, Roe BA, Tweten RK. 1995. The primary structure of Clostridium septicum alpha-toxin exhibits similarity with that of Aeromonas hydrophila aerolysin. Infection and Immunity. 63:340-4. https://doi.org/10.1128/iai.63.1.340-344.1995
Barker IK, Van Dreumel AA, Palmer N. The Alimentary System. En: Jubb KF, Kennedy PC and Palmer N. 1993. Pathology of Domestic Animals, Vol. 2.4th Edition. San Diego, Academic Press Inc., pp. 13-18.
Ba-Thein W, Lyristis M, Ohtani K, Nisbet IT, Hayashi H, Rood JI, Shimizu T. 1996. The virR/virS locus regulates the transcription of genes encoding extracellular toxin production in Clostridium perfringens. Journal of Bacteriology. 178(9):2514-20. https://doi.org/10.1128/jb.178.9.2514-2520.1996
Bhown AS & Habeeb AF. 1977. Structural studies on ε-prototoxin of Clostridium perfringens type D. Localization of the site of tryptic scission necessary for activation to ε-toxin. Biochemical and Biophysical Research Communications. 78(3):889-96. https://doi.org/10.1016/0006-291X(77)90506-X
Blackwell TE, Butler DG, Bell JA. 1983. Enterotoxemia in the goat: the humoral response and local tissue reaction following vaccination with two different bacterin-toxoids. Canadian Journal of Comparative Medicine. 47(2):127-32.
Bokori-Brown M, Savva CG, Fernandes da Costa SP, Naylor CE, Basak AK, Titball RW. 2011. Molecular basis of toxicity of Clostridium perfringens epsilon toxin. The FEBS Journal. 278(23):4589-601. https://doi.org/10.1111/j.1742-4658.2011.08140.x
Bossu, JL, Wioland L, Doussau F, Isope P, Popoff MR, Poulain B. 2020. Epsilon toxin from Clostridium perfringens causes inhibition of potassium inward rectifier (Kir) channels in oligodendrocytes. Toxins. 12(1):36. https://doi.org/10.3390/toxins12010036
Briggs DC, Naylor CE, Smedley, JG, Lukoyanova N, Robertson S, Moss DS, McClane, BA, Basak AK. 2011. Structure of the food-poisoning Clostridium perfringens enterotoxin reveals similarity to the aerolysin-like pore-forming toxins. Journal of Molecular Biology. 413(1):138-49. https://doi.org/10.1016/j.jmb.2011.07.066
Briolat V & Reysset G. 2002. Identification of the Clostridium perfringens genes involved in the adaptive response to oxidative stress. Journal of Bacteriology. 184(9):2333-43. https://doi.org/10.1128/JB.184.9.2333-2343.2002
Bruggisser J, Iacovache I, Musson SC, Degiacomi MT, Posthaus H, Zuber B. 2022. Cryo‐EM structure of the octameric pore of Clostridium perfringens β‐toxin. EMBO Reports. 23(12):e54856. https://doi.org/10.15252/embr.202254856
Bullen JJ. 1952. Enterotoxæmia of sheep: Clostridium welchii type D in the alimentary tract of normal animals. The Journal of Pathology and Bacteriology. 64(1):201-6. https://doi.org/10.1002/path.1700640120
Bullen JJ. Role of toxins in host parasite relationships. En: Ajl S, Kadis S, Montie T. 1970. Microbial Toxins. New York/London, Academic Press, pp. 233-276.
Centers for Disease Control and Prevention (CDC). 2000. Biological and chemical terrorism: strategic plan for preparedness and response. Recommendations of the CDC Strategic Planning Workgroup. MMWR;49(RR04):1-14. [En línea] Disponible en: https://www.cdc.gov/mmwr/preview/mmwrhtml/rr4904a1.htm [Consultado 11/12/2024]
Chassin C, Bens M, de Barry J, Courjaret R, Bossu JL, Cluzeaud F, Ben Mkaddem S, Gibert M, Poulain B, Popoff MR, Vandewalle A. 2007. Pore-forming epsilon toxin causes membrane permeabilization and rapid ATP depletion-mediated cell death in renal collecting duct cells. American Journal of Physiology-Renal Physiology. 293(3):F927-F937. https://doi.org/10.1152/ajprenal.00199.2007
Cole AR, Gibert M, Popoff M, Moss DS, Titball RW, Basak, AK. 2004. Clostridium perfringens ε-toxin shows structural similarity to the pore-forming toxin aerolysin. Nature Structural & Molecular Biology. 11(8):797-8. https://doi.org/10.1038/nsmb804
Daneshmand A, Kermanshahi H, Mohammed J, Sekhavati MH, Javadmanes A, Ahmadian M, Alizadeh M, Razmyar J, Kulkarni RR. 2022. Intestinal changes and immune responses during Clostridium perfringens-induced necrotic enteritis in broiler chickens. Poultry Science. 101(3):101652. https://doi.org/10.1016/j.psj.2021.101652
Dorca-Arévalo J, Gómez de Aranda I, Blasi J. 2022. New mutants of epsilon toxin from Clostridium perfringens with an altered receptor-binding site and cell-type specificity. Toxins. 14(4):288. https://doi.org/10.3390/toxins14040288
Du J, Wang T, Xu L, Wang C, Liu Y, Pan C, Chen X, Zhu Z, Luo Y, Yin C. 2023. Clostridium perfringens epsilon prototoxin mutant rpETXY30A/Y71A/H106P/Y196A as a vaccine candidate against enterotoxemia. Vaccine. 41(32):4762-70. https://doi.org/10.1016/j.vaccine.2023.06.044
Fathima S, Hakeem WG, Shanmugasundaram R, Selvaraj RK. 2022. Necrotic enteritis in broiler chickens: are view on the pathogen, pathogenesis, and prevention. Microorganisms. 10(10):1958. https://doi.org/10.3390/microorganisms10101958
Fennessey CM, Sheng J, Rubin DH, McClain MS. 2012. Oligomerization of Clostridium perfringens epsilon toxin is dependent upon caveolins 1 and 2. PLoS One. 7(10):e46866. https://doi.org/10.1371/journal.pone.0046866
Fernandez-Miyakawa ME, Fisher DJ, Poon R, Sayeed S, Adams V, Rood JI, McClane BA, Uzal FA. 2007. Both epsilon-toxin and beta-toxin are important for the lethal properties of Clostridium perfringens type B isolates in the mouse intravenous injection model. Infection and Immunity. 75(3):1443-52. https://doi.org/10.1128/IAI.01672-06
Finnie JW, Blumbergs PC, Manavis J. 1999. Neuronal damage produced in rat brains by Clostridium perfringens type D epsilon toxin. Journal of Comparative Pathology. 120(4):415-20. https://doi.org/10.1053/jcpa.1998.0289
Finnie JW. 2004. Neurological disorders produced by Clostridium perfringens type D epsilon toxin. Anaerobe. 10(2):145-50. https://doi.org/10.1016/j.anaerobe.2003.08.003.
Finnie, JW, Manavis J, Blumbergs P. 2008. Aquaporin-4 in acute cerebral edema produced by Clostridium Perfringens type D epsilon toxin. Veterinary Pathology. 45(3):307-9. https://doi.org/10.1354/vp.45-3-307
Finnie JW, Navarro MA, Uzal FA. 2020. Pathogenesis and diagnostic features of brain and ophthalmic damage produced by Clostridium perfringens type D epsilon toxin. Journal of Veterinary Diagnostic Investigation. 32(2):282-6. https://doi.org/10.1177/1040638719900190
Finnie JW & Uzal FA. 2022. Pathology and pathogenesis of brain lesions produced by Clostridium perfringens type D epsilon toxin. International Journal of Molecular Sciences. 23(16), 9050. https://doi.org/10.3390/ijms23169050
Freedman JC, Shrestha A, McClane BA. 2016. Clostridium perfringens enterotoxin: action, genetics, and translational applications. Toxins. 8(3):73. https://doi.org/10.3390/toxins8030073
Gale C, Velazquez E, Sperling D. 2022. The role of Clostridium perfringens in neonatal diarrhoea and the importance of effective control. Livestock. 27(3):120-6. https://doi.org/10.12968/live.2022.27.3.120
García JP, Adams V, Beingesser J, Hughes ML, Poon R, Lyras D, Hill, A, McClane BA, Rood JI, Uzal FA. 2013. Epsilon toxin is essential for the virulence of Clostridium perfringens type D infection in sheep, goats, and mice. Infection and Immunity. 81(7):2405-14. https://doi.org/10.1128/IAI.00238-13
Giannitti F, García JP, Rood JI, Adams V, Armendano JI, Beingesser J, Uzal FA. 2021. Cardiopulmonary lesions in sheep produced by experimental acute Clostridium Perfringens type D enterotoxemia. Veterinary Pathology. 58(1):103-13. https://doi.org/10.1177/0300985820965554
Giannitti F, García JP, Adams V, Armendano JI, Beingesser J, Rood JI, Uzal FA. 2023. Experimental acute Clostridium perfringens type D enterotoxemia in sheep is not characterized by specific renal lesions. Veterinary Pathology. 60(4):412-19. https://doi.org/10.1177/03009858231171669
Gibert M, Jolivet-Reynaud C, Popoff MR. 1997. Beta2 toxin, a novel toxin produced by Clostridium perfringens. Gene. 203(1):65-73. https://doi.org/10.1016/s0378-1119(97)00493-9
Gibert M, Petit L, Raffestin S, Okabe A, Popoff MR. 2000. Clostridium perfringens iota-toxin requires activation of both binding and enzymatic components for cytopathic activity. Infection and Immunity. 68(7):3848-53. https://doi.org/10.1128/IAI.68.7.3848-3853.2000
Gill DM. 1982. Bacterial toxins: a table of lethal amounts. Microbiological Reviews. 46(1):86-94. https://doi.org/10.1128/mr.46.1.86-94.1982
Goldstein J, Morris WE, Loidl CF, Tironi-Farinatti C, McClane BA, Uzal FA, Fernandez Miyakawa ME. 2009. Clostridium perfringens epsilon toxin increases the small intestinal permeability in mice and rats. PLoS One. 4(9):e7065. https://doi.org/10.1371/journal.pone.0007065
Goossens E, Verherstraeten S, Timbermont L, Valgaeren BR, Pardon B, Haesebrouck F, Ducatelle R, Deprez PR, Van Immerseel F. 2014. Clostridium perfringens strains from bovine enterotoxemia cases are not superior in in vitro production of alpha toxin, perfringolysin O and proteolytic enzymes. BMC Veterinary Research. 10(1):32. https://doi.org/10.1186/1746-6148-10-32
Gordon VM, Nelson KL, Buckley JT, Stevens VL, Tweten RK, Elwood PC, Leppla SH. 1999. Clostridium septicum alpha toxin uses glycosylphosphatidylinositol-anchored protein receptors. The Journal of Biological Chemistry. 274(38):27274-80. https://doi.org/10.1074/jbc.274.38.27274
Goswami PP, Rupa P, Prihar NS, Garg LC. 1996. Molecular cloning of Clostridium perfringens epsilon-toxin gene and its high-level expression in E. coli. Biochemical and Biophysical Research Communications. 226(3):735-40. https://doi.org/10.1006/bbrc.1996.1422
Hatheway CL. 1990. Toxigenic clostridia. Clinical Microbiology Reviews. 3(1):66-98. https://doi.org/10.1128/CMR.3.1.66
Hughes ML, Poon R, Adams V, Sayeed S, Saputo J, Uzal FA, McClane BA, Rood JI. 2007. Epsilon-toxin plasmids of Clostridium perfringens type D are conjugative. Journal of Bacteriology. 189(21):7531-8. https://doi.org/10.1128/JB.00767-07
Hunter SE, Clarke IN, Kelly DC, Titball RW. 1992. Cloning and nucleotide sequencing of the Clostridium perfringens epsilon-toxin gene and its expression in Escherichia coli. Infection and Immunity. 60(1):102-10. https://doi.org/10.1128/IAI.60.1.102-110.1992
Hunter SE, Brown JE, Oyston PC, Sakurai J, Titball RW. 1993. Molecular genetic analysis of beta-toxin of Clostridium perfringens reveals sequence homology with alpha-toxin, gamma-toxin, and leukocidin of Staphylococcus aureus. Infection and Immunity. 61(9):3958-65. https://doi.org/10.1128/iai.61.9.3958-3965.1993
Hussain K, Ijaz M, Farooqi SH, Rizvi SNB, Ali A, Ghaffar A, Aqib AI, and Iqbal MK. 2018. Molecular characterization of Clostridium perfringens toxino-types and type D multidrug resistance profile in diarrheic sheep. Pakistan Veterinary Journal. 38(3):271-5. https://doi.org/10.29261/pakvetj/2018.037
Ivie SE, McClain MS. 2012. Identification of amino acids important for binding of Clostridium perfringens epsilon toxin to host cells and to HAVCR1. Biochemistry. 51(38):7588-95. https://doi.org/10.1021/bi300690a
Janda JM, Abbott SL, Khashe S, Kellogg GH, Shimada T. 1996. Further studies on biochemical characteristics and serologic properties of the genus Aeromonas. Journal of Clinical Microbiology. 34(8):1930-3. https://doi.org/10.1128/jcm.34.8.1930-1933.1996
Jolivet-Reynaud C, Popoff MR, Vinit MA, Ravisse P, Moreau H, Alouf JE. 1986. Enteropathogenicity of Clostridium perfringens beta toxin and other clostridial toxins. Zentralblatt für Bakteriologie. 15:145-51.
Keyburn AL, Bannam TL, Moore RJ, Rood JI. 2010. NetB, a pore-forming toxin from necrotic enteritis strains of Clostridium perfringens. Toxins. 2(7):1913-27. https://doi.org/10.3390/toxins2071913
Kiu R & Hall LJ. 2018. An update on the human and animal enteric pathogen Clostridium perfringens. Emerging Microbes & Infections. 7(1):1-15. https://doi.org/10.1038/s41426-018-0144-8
Labbe RG & Juneja VK. Capítulo 10: Clostridium perfringens. En: Dodd CER, Aldsworth T, Stein RA, Cliver DO, Riemann HP. 2017. Foodborne Diseases. 3er Edición. Academic Press, pp. 235-42. https://doi.org/10.1016/B978-0-12-385007-2.00010-3
Larsen AE, Miceli G, Mórtola EC. 2018. Vacunas en rumiantes domésticos [ebook]. Series: Libros de Cátedra. [En Línea]. Disponible en: http://sedici.unlp.edu.ar/handle/10915/78435 [Consultado 28-01-2025]. https://doi.org/10.35537/10915/78435
Leeming RL, Pryce JD, Meynell MJ. 1961. Clostridium welchii and food-poisoning. British Medical Journal. 1(5224):1-501. https://doi.org/10.1136/bmj.1.5224.501-a
Li J, Miyamoto K, Sayeed S, McClane BA. 2010. Organization of the cpe locus in CPE-positive Clostridium perfringens type C and D isolates. PloS One. 5(6):e10932. https://doi.org/10.1371/journal.pone.0010932
Li Q, Xin W, Gao S, Kang L, Wang J. 2013. A low-toxic site-directed mutant of Clostridium perfringens ε-toxin as a potential candidate vaccine against enterotoxemia. Human Vaccines & Immunotherapeutics. 9(11):2386-92. https://doi.org/10.4161/hv.25649
Lindsay CD. 1996. Assessment of aspects of the toxicity of Clostridium perfringens E-toxin using the MDCK cell line. Human & Experimental Toxicology. 15(11):904-8. https://doi.org/10.1177/096032719601501107
Lobato FCF, Salvarani FM, de Assis, RA. 2007. Clostridioses dos pequeños ruminantes. Clostridiosis of small ruminants. Revista Portuguesa de Ciencias Veterinarias.102(561-562):23-34.
Lonchamp E, Dupont JL, Wioland L, Courjaret R, Mbebi-Liegeois C, Jover E, Doussau F, Popoff MR, Bossu JL, De Barry J, Poulain B. 2010. Clostridium perfringens epsilon toxin targets granule cells in the mouse cerebellum and stimulates glutamate release. PloS One. 5(9):e13046. https://doi.org/10.1371/journal.pone.0013046
Losada-Eaton DM, Uzal FA, Fernández Miyakawa ME. 2008. Clostridium perfringens epsilon toxin is absorbed from different intestinal segments of mice. Toxicon. 51(7): 1207-13. https://doi.org/10.1016/j.toxicon.2008.02.008
Macfarlane MG, Knight BC. 1941. The biochemistry of bacterial toxins: The lecithinase activity of C. welchii toxins. The Biochemical Journal. 35(8-9):884-902. https://doi.org/10.1042/bj0350884
Mander KA, Finnie JW. 2018. Loss of endothelial barrier antigen immunoreactivity in rat retinal microvessels is correlated with Clostridium perfringens type D épsilon toxin-induced damage to the blood–retinal barrier. Journal of Comparative Pathology. 158:51-5. https://doi.org/10.1016/j.jcpa.2017.11.003
McClane BA, Uzal FA, Fernandez Miyakawa ME, Lyerly D, Wilkins T. The Enterotoxic Clostridia. En: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. 2006. The Prokaryotes: Volume 4: Bacteria: Firmicutes, Cyanobacteria. 3er edición. New York, NY, Springer, pp. 698-752. https://doi.org/10.1007/0-387-30744-3_22
McDonel JL. 1980. Clostridium perfringens toxins (type A, B, C, D, E). Pharmacology & Therapeutics. 10(3):617-55. https://doi.org/10.1016/0163-7258(80)90031-5
Mantis NJ. 2005. Vaccines against the category B toxins: Staphylococcal enterotoxin B, epsilon toxin and ricin. Advanced Drug Delivery Reviews. 57(9):1424-39. https://doi.org/10.1016/j.addr.2005.01.017
Mehdizadeh Gohari I, Navarro MA, Li J, Shrestha A, Uzal FA, McClane BC. 2021. Pathogenicity and virulence of Clostridium perfringens. Virulence, 12(1):723-53. https://doi.org/10.1080/21505594.2021.1886777
Minami J, Katayama S, Matsushita O, Matsushita C, Okabe A. 1997. Lambda-toxin of Clostridium perfringens activates the precursor of epsilon-toxin by releasing its N- and C-terminal peptides. Microbiology and Immunology. 41(7):527-35. https://doi.org/10.1111/j.1348-0421.1997.tb01888.x
Miyamoto O, Minami J, Toyoshima T, Nakamura T, Masada T, Nagao S, Negi T, Itano T, Okabe A. 1998. Neurotoxicity of Clostridium perfringens epsilon-toxin for the rat hippocampus via the glutamatergic system. Infection and Immunity. 66(6):2501-08. https://doi.org/10.1128/IAI.66.6.2501-2508.1998
Miyamoto K, Li J, Sayeed S, Akimoto S, McClane BA. 2008. Sequencing and diversity analyses reveal extensive similarities between some epsilon-toxin-encoding plasmids and the pCPF5603 Clostridium perfringens enterotoxin plasmid. Journal of Bacteriology. 190(21):7178-88. https://doi.org/10.1128/JB.00939-08
Miyamoto K, Yumine N, Mimura K, Nagahama M, Li J, McClane BA, Akimoto S. 2011. Identification of novel Clostridium perfringens type E strains that carry an iota toxin plasmid with a functional enterotoxin gene. PLoS One. 6(5):e20376. https://doi.org/10.1371/journal.pone.0020376
Moustafa S, Zakaria I, Moustafa A, AboSakaya R, Selim, A. 2022. Molecular epidemiology and genetic characterization of Clostridium perfringens infections in lambs. Microbial Pathogenesis. 173(Pt A):105822. https://doi.org/10.1016/j.micpath.2022.105822
Nagahama M, Takehara M, Rood JI. 2019. Histotoxic clostridial infections. Microbiology Spectrum 7(4). https://doi.org/10.1128/microbiolspec.gpp3-0024-2018
Navarro MA, McClane BA, Uzal FA. 2018. Mechanisms of action and cell death associated with Clostridium perfringens toxins. Toxins. 10(5):212. https://doi.org/10.3390/toxins10050212
Niilo L, Moffatt RE, Avery R. 1963. Bovine “enterotoxemia”. II. Experimental reproduction of the disease. The Canadian Veterinary Journal = La revue veterinaire canadienne. 4(11):288-98.
Niilo L. 1980. Clostridium perfringens in animal disease: are view of current knowledge. The Canadian Veterinary Journal. 21(5):141-8.
Oda M, Terao Y, Sakurai J, Nagahama M. 2015. Membrane-binding mechanism of Clostridium perfringens alpha-toxin. Toxins. 7(12):5268-75. https://doi.org/10.3390/toxins7124880
Ortega J, Verdes JM, Morrell EL, Finnie JW, Manavis J, Uzal FA. 2019. Intramural vascular edema in the brain of goats with Clostridium perfringens type D enterotoxemia. Veterinary Pathology. 56(3):452-9. https://doi.org/10.1177/0300985818817071
Oyston PCF, Payne DW, Havard HL, Williamson ED, Titball RW. 1998. Production of a non-toxic site-directed mutant of Clostridium perfringens e-toxin which induces protective immunity in mice. Microbiology. 144(Pt 2):333-41. https://doi.org/10.1099/00221287-144-2-333
Parker MW, Feil SC. 2005. Pore-forming protein toxins: From structure to function. Progress in Biophysics and Molecular Biology. 88(1):91-142. https://doi.org/10.1016/j.pbiomolbio.2004.01.009
Pawaiya RS, Gururaj K, Gangwar NK, Singh DD, Kumar R, Kumar A. 2020. The challenges of diagnosis and control of enterotoxaemia caused by Clostridium perfringens; in small ruminants. Advances in Microbiology. 10(5):238-73. https://doi.org/10.4236/aim.2020.105019
Payne DW, Williamson ED, Havard H, Modi N, Brown J. 1994. Evaluation of a new cytotoxicity assay for Clostridium perfringens type D epsilon toxin. FEMS Microbiology Letters. 116(2):161-7. https://doi.org/10.1111/j.1574-6968.1994.tb06695.x
Petit L, Gibert M, Gillet D, Laurent-Winter C, Boquet P, Popoff MR. 1997. Clostridium perfringens epsilon-toxin acts on MDCK cells by forming a large membrane complex. Journal of Bacteriology. 179(20):6480-7. https://doi.org/10.1128/JB.179.20.6480-6487.1997
Petit L, Gibert M, Gourch A, Bens, M, Vandewalle, A, Popoff, MR. 2003. Clostridium perfringens epsilon toxin rapidly decreases membrane barrier permeability of polarized MDCK cells. Cellular Microbiology. 5(3):155-64. https://doi.org/10.1046/j.1462-5822.2003.00262.x
Phukan A, Kalita D, Das B. 2000. Experimental production of enterotoxaemia in goats and its treatment. Indian Veterinary Journal. 77:1051-3.
Popoff MR. 2011. Epsilon toxin: a fascinating pore-forming toxin: Clostridium perfringens epsilon toxin. The FEBS Journal. 278(23):4602-15. https://doi.org/10.1111/j.1742-4658.2011.08145.x
Rood JI & Cole ST. 1991. Molecular genetics and pathogenesis of Clostridium perfringens. Microbiological Reviews. 55(4):621-48.
Rood JI. 1998. Virulence genes of Clostridium perfringens. Annual Review of Microbiology. 52:333-60. https://doi.org/10.1146/annurev.micro.52.1.333
Rood JI, Adams V, Lacey J, Lyras D, McClane BA, Melville SB, Moore RJ, Popoff MR, Sarker MR, Songer JG, Uzal FA, Van Immerseel F. 2018. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe. 53:5-10. https://doi.org/10.1016/j.anaerobe.2018.04.011
Rumah KR, Ma Y, Linden JR, Oo ML, Anrather J, Schaeren-Wiemers N, Alonso MA, Fischetti VA, McClain MS, Vartanian T. 2015. The myelin and lymphocyte protein MAL is required for binding and activity of Clostridium perfringensε-toxin. PLoS Pathogens. 11(5):e1004896. https://doi.org/10.1371/journal.ppat.1004896
Sakaguchi Y, Kobayashi K, Takehara M, Nagahama M. 2023. Clostridium perfringens epsilon-toxin requires acid sphingomyelinase for cellular entry. Anaerobe. 82:102753. https://doi.org/10.1016/j.anaerobe.2023.102753
Sakurai J & Duncan CL. 1977. Purification of beta-toxin from Clostridium perfringens type C. Infection and Immunity. 18(3):741-5. https://doi.org/10.1128/iai.18.3.741-745.1977.
Sakurai J, Nagahama M, Oda M, Tsuge H, Kobayashi K. 2009. Clostridium perfringens iota-toxin: structure and function. Toxins. 1(2):208-28. https://doi.org/10.3390/toxins1020208
Savva CG, Fernandes da Costa SP, Bokori-Brown M, Naylor CE, Cole AR, Moss DS, Titball RW, Basak AK. 2013. Molecular architecture and functional analysis of NetB, a pore-forming toxin from Clostridium perfringens. The Journal of Biological Chemistry. 288(5):3512-22. https://doi.org/10.1074/jbc.M112.430223
Savva CG, Clark AR, Naylor CE, Popoff MR, Moss DS, Basak AK, Titball RW, Bokori-Brown M. 2019. The pore structure of Clostridium perfringens epsilon toxin. Nature Communications.10(1):2641. https://doi.org/10.1038/s41467-019-10645-8
Sayeed S, Li J, McClane BA. 2007. Virulence plasmid diversity in Clostridium perfringens type D isolates. Infection and Immunity. 75(5):2391-8. https://doi.org/10.1128/IAI.02014-06
Sayeed S, Uzal FA, Fisher DJ, Saputo J, Vidal JE, Chen Y, Gupta P, Rood, JI, McClane BA. 2008. Beta toxin is essential for the intestinal virulence of Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model. Molecular Microbiology. 67(1):15-30. https://doi.org/10.1111/j.1365-2958.2007.06007.x
Sayeed S, Li J, McClane BA. 2010. Characterization of virulence plasmid diversity among Clostridium perfringens Type B isolates. Infection and Immunity. 78(1):495-504. https://doi.org/10.1128/IAI.00838-09
Shimizu T, Ohtani K, Hirakawa H. Ohshima K, Yamashita A, Shiba T, Ogasawara N, Hattori M, Kuhara S, Hayashi H. 2002. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proceedings of the National Academy of Sciences of the United States of America. 99(2):996-1001. https://doi.org/10.1073/pnas.022493799
Shrestha A, Uzal FA, McClane BA, Fischetti A, Novick R, Ferretti J, Portnoy D, Rood J. 2018. Enterotoxic clostridia: Clostridium perfringens enteric diseases. Microbiology Spectrum. 6(5): 10.1128/microbiolspec.gpp3-0003-2017. https://doi.org/10.1128/microbiolspec.GPP3-0003-2017
Silva ROS & Lobato FCF. 2015. Clostridium perfringens: a review of enteric diseases in dogs, cats and wild animals. Anaerobe. 33:14-17. https://doi.org/10.1016/j.anaerobe.2015.01.006
Songer JG. 1996. Clostridial enteric diseases of domestic animals. Clinical Microbiology Reviews. 9(2):216-34. https://doi.org/10.1128/CMR.9.2.216.
Souza AM, Reis JKP, Assis RA, Horta CC, Siqueira FF, Facchin S, Alvarenga ER, Castro CS, Salvarani FM, Silva ROS, Pires PS, Contigli C, Lobato FCF, Kalapothakis E. 2010. Molecular cloning and expression of epsilon toxin from Clostridium perfringens type D and tests of animal immunization. Genetics and Molecular Research. 9(1):266-76. https://doi.org/10.4238/vol9-1gmr711
Stevens DL & Bryant AE. 2002. The role of clostridial toxins in the pathogenesis of gas gangrene. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 35(Suppl 1), S93-S100. https://doi.org/10.1086/341928
Stiles BG & Wilkins TD. 1986. Purification and characterization of Clostridium perfringens iota toxin: dependence on two nonlinked proteins for biological activity. Infection and Immunity. 54(3):683-8.
Stiles BG, Barth G, Barth H, Popoff MR. 2013. Clostridium perfringens epsilon toxin: a malevolent molecule for animals and man? Toxins. 5(11):2138-60. https://doi.org/10.3390/toxins5112138
Sumithra TG, Chaturvedi VK, Siju SJ, Susan C, Rawat M, Rai AK, Sunita SC. 2013. Enterotoxaemia in goats: a review of current knowledge. Small Ruminant Research. 114(1):1-9. https://doi.org/10.1016/j.smallrumres.2013.05.013
Takagishi T, Oda M, Takehara M, Kobayashi K, Nagahama M. 2016. Oligomer formation of Clostridium perfringens epsilon-toxin is induced by activation of neutral sphingomyelinase. Biochimica et Biophysica Acta (BBA) – Biomembranes. 1858(11):2681-8. https://doi.org/10.1016/j.bbamem.2016.07.009
Takehara M, Takagishi T, Seike S, Oda M, Sakaguchi Y, Hisatsune J, Ochi S, Kobayashi K, Nagahama M. 2017. Cellular entry of Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin. Toxins. 9(8):247. https://doi.org/10.3390/toxins9080247
Tamai E, Ishida T, Miyata S, Matsushita O, Suda H, Kobayashi S, Sonobe H, Okabe A. 2003. Accumulation of Clostridium perfringens epsilon-toxin in the mouse kidney and its possible biological significance. Infection and Immunity. 71(9):5371-5. https://doi.org/10.1128/IAI.71.9.5371-5375.2003
Theoret JR & McClane BA. Chapter 5: Toxins of Clostridium perfringens. 2016. En: Clostridial diseases of animals. 2016. Uzal FA, Songer JG, Prescott JF, Popoff MR. Wiley-Blackwell, Ames, IA, pp. 45-60. https://doi.org/10.1002/9781118728291.ch5
Thomas PL, Downey NE, Dreadon RS. 1956. Mortality in lambs due to enterotoxaemia associated with heavy infestations of Moniezia expansa. New Zealand Veterinary Journal. 4(4):161-5. https://doi.org/10.1080/00480169.1956.33240
Titball RW, Lewis N, Nicholas R. 2023. Is Clostridium Perfringens epsilon toxin associated with multiple sclerosis? Multiple Sclerosis Journal. 29(9):1057-63. https://doi.org/10.1177/13524585231186899
Uzal FA, Pasini MI, Olaechea F, Robles CA, Elizondo A. 1994. An outbreak of enterotoxaemia caused by Clostridium perfringens type D in goats in Patagonia. The Veterinary Record. 135(12):279-80. https://doi.org/10.1136/vr.135.12.279
Uzal FA, Plumb JJ, Blackall LL, Kelly WR. 1997. PCR detection of Clostridium perfringens producing different toxins in faeces of goats. Letters in Applied Microbiology. 25(5):339-44. https://doi.org/10.1046/j.1472-765X.19919977.00247.x
Uzal FA & Kelly WR. 1998. Experimental Clostridium perfringens type D enterotoxemia in goats. Veterinary Pathology. 35(2):132-40. https://doi.org/10.1177/030098589803500207
Uzal FA, Rolfe BE, Smith NJ, Thomas AC, Kelly WR. 1999. Resistance of ovine, caprine and bovine endothelial cells to Clostridium perfringens type D epsilon toxin in vitro. Veterinary Research Communication. 23(5):275-84. https://doi.org/10.1023/a:1006362819202
Uzal FA, Kelly WR, Morris WE, Assis RA. 2002. Effects of intravenous injection of Clostridium perfringens type D epsilon toxin in calves. The Journal of Comparative Pathology. 126:71-5. https://doi.org/10.1053/jcpa.2001.0514
Uzal FA, Kelly WR, Thomas R, Hornitzky M, Galea F. 2003. Comparison of four techniques for the detection of Clostridium perfringens type D épsilon toxin in intestinal contents and other body fluids of sheep and goats. Journal of Veterinary Diagnostic Investigation. 15(2): 94-8. https://doi.org/10.1177/104063870301500202
Uzal FA. 2004. Diagnosis of Clostridium perfringens intestinal infections in sheep and goats. Anaerobe. 10(2):135-43. https://doi.org/10.1016/j.anaerobe.2003.08.005
Uzal FA & Songer JG. 2008. Diagnosis of Clostridium Perfringens intestinal infections in sheep and goats. Journal of Veterinary Diagnostic Investigation. 20(3):253-65. https://doi.org/10.1177/104063870802000301
Uzal FA, Saputo J, Sayeed S, Vidal JE, Fisher DJ, Poon R, Adams V, Fernandez-Miyakawa ME, Rood JI, McClane BA. 2009. Development and application of new mouse models to study the pathogenesis of Clostridium perfringens type C enterotoxemias. Infection and Immunity. 77(12):5291-9. https://doi.org/10.1128/iai.00825-09
Uzal FA, Vidal JE, McClane BA, Gurjar AA. 2010. Clostridium perfringens toxins involved in mammalian veterinary diseases. The Open Toxicology Journal. 2:24-42. https://doi.org/10.1002/9781118728291
Uzal FA. 2013. Enfermedades clostridiales de los rumiantes, con especial énfasis en bovinos. Parte 1: Enteroroxemias, abomasitis y enteriris. XLI Jornadas Uruguayas de Buiatría, Paysandú, Uruguay, pp 65.
Uzal FA, Freedman JC, Shrestha A, Theoret JR, Garcia J, Awad MM, Adams V, Moore RJ, Rood JI, McClane BA. 2014. Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiology. 9(3):361-77. https://doi.org/10.2217/fmb.13.168
Uzal FA, Songer JG, Prescott JF, Popoff MR. 2016. Clostridial diseases of animals. Iowa, USA, John Wiley & Sons, Inc. https://doi.org/10.1002/9781118728291
Uzal FA, Giannitti F, Asin J. 2022. Yellow lamb disease - Clostridium perfringens type A enterotoxemia of sheep: a Review. Animals. 12(12):1590. https://doi.org/10.3390/ani12121590
Wioland L, Dupont JL, Doussau F, Gaillard S, Heid, F, Isope P, Pauillac S, Popoff MR, Bossu JL, Poulain B. 2015. Epsilon toxin from Clostridium perfringens acts on oligodendrocytes without forming pores and causes demyelination. Cellular Microbiology. 17(3):369-88. https://doi.org/10.1111/cmi.12373
Yamamura K, Ashida H, Okano T, Kinoshita-Daitoku R, Suzuki S, Ohtani K, Hamagaki M, Ikeda T, Suzuki T. 2019. Inflammasome activation induced by perfringolysin O of Clostridium perfringens and its involvement in the progression of gas gangrene. Frontiers in Microbiology. 10:2406. https://doi.org/10.3389/fmicb.2019.02406
Zhu C, Ghabriel MN, Blumbergs PC, Reilly PL, Manavis J, Youssef J, Hatami S, & Finnie JW. 2001. Clostridium perfringens prototoxin-induced alteration of endothelial barrier antigen (EBA) immunoreactivity at the blood-brain barrier (BBB). Experimental neurology. 169(1):72–82. https://doi.org/10.1006/exnr.2001.7652
Téléchargements
Publié
Numéro
Rubrique
Licence
© Mauro Manfredi, Alejandra J. Larsen, Guillermo Hernan Sguazza 2025

Cette œuvre est sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.

Analecta Veterinaria por Facultad de Ciencias Veterinarias se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.





















