Resistencia bacteriana a los antimicrobianos ocasionada por bombas de eflujo. Impacto en la multiresistencia

Autores

  • ML Marchetti
  • J Errecalde
  • N Mestorino

Palavras-chave:

multirresistencia, antimicrobiano, bomba de eflujo, bacterias

Resumo

La resistencia a los antimicrobianos representa un severo problema a nivel mundial. Se han descripto variados mecanismos de resistencia, entre los cuales se encuentran las bombas de eflujo. Estas son proteínas transportadoras de membrana, organizadas en superfamilias y distribuidas ubicuamente entre organismos procariotas y eucariotas. Los genes que codifican para las bombas de eflujo pueden estar localizados en el cromosoma bacteriano o bien en elementos genéticos transmisibles como los plásmidos. Algunos sistemas tienen la capacidad de expulsar antimicrobianos estructuralmente disímiles (Multiple Drug Resistance: MDR). La presencia de los mismos en combinación con otros mecanismos genera altos niveles de resistencia entre patógenos y comensales originando un consecuente fracaso terapéutico. Debido a la creciente importancia de este mecanismo de defensa microbiano se están investigando diversas estrategias para modificar y revertir la resistencia bacteriana por eflujo.

Downloads

Métricas

Visualizaciones del PDF
1,450
Jan 2011Jul 2011Jan 2012Jul 2012Jan 2013Jul 2013Jan 2014Jul 2014Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 2026120
|

Referências

Davies J. Inactivation of antibiotics and the dis- semination of resistance genes. J Dairy Sci 1994; 264: 375-82.

Miller P, Rather P. Global response systems that cause resistance. En Lewis R, Sayers A, Taber H, Wax R, editors. Bacterial resistance to antimicrobials. New York, Basel, 2002, p. 60-82.

European Agency for Evaluation of Medicinal Prod- ucts. Antibiotic resistance in the European Union as- sociated with therapeutic use of veterinary medicines, 1999, EMEA/CVMP/342/99, London, UK.

Levy S. Emergence of antibiotic-resistance bacteria in the intestinal flora of farm inhabitants. J Infect Dis 1978, 137: 689-90.

Errecalde J. Uso de antimicrobianos en animales de consumo. Incidencias del desarrollo de resistencias en salud pública, Organización de las Naciones Unidas para la Agricultura y Alimentación FAO. Roma, Italia, 2004.

Webber M, Piddock L. The importante of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 2003, 51: 9-11.

Livermore D. Beta-lactamases in laboratory and clinical resistance. Clin Microbiol Rev 1995; 8: 557–84.

Mingeot-Leclercq M, Glupczynski Y, Tulkens P. Aminoglycosides: activity and resistance. Minireview. Antimicrob Agents Chemother 1999; 43: 727–37.

Ruiz J. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J Antimicrob Chemother 2003; 51: 1109-17.

Spratt R. Resistance to antibiotic mediated by target alterations. Science 1994, 264: 388-93.

Delcour A. Outer membrana permeability and antibiotic resistance. Biochim Biophys Acta 2009; 1794: 808–16.

Scatamburlo Moreira M, Chartone de Souza E, Alencar de Morais C. Multidrug efflux systems in gram – negative bacteria. Braz J Med Biol Res 2004; 35: 19-28.

Thanassi D, Cheng L, Nikaido H. Active efflux of bile salts by Escherichia coli. J Bacteriol 1997; 179: 2512-18.

Lynch A. Efflux systems in bacterial pathogens: An opportunity for therapeutic intervention? An industry view. Biochem Pharmacol 2006; 71: 949-56.

Saier M, Paulsen I, Sliwinski M, Pao S, Skuffay R, Nikaido H. Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. FACEB J 1998; 12: 265-74.

Van Bambeke F, Glupzynski Y, Plesiat P. Antibiotic efflux pumps in procaryotic cells: occurence, impact for resistance and strategies for the future of antimicrobial therapy. J Antimicrob Chemother 2003; 51:1167-73.

Okusu H, Ma D, Nikaido H. AcrAB efflux pump plays a major role in the antibiotic resistance pheno- type of Escherichia coli multiple-antibiotic-resistance (mar) mutants. J Bacteriol 1996; 178:306-08.

Van Bambeke F, Balzi E, Tulkens P. Antimicrobial efflux pumps. Biochem Pharmacol 2000; 60: 457-70.

Igarashi Y, Aoki K, Mamitsuka H, Kuma K, Kane- hisa M. The evolutionary repertoires of the Eukaryotic- Type ABC transporters in terms of the phylogeny of ATP-binding domains in eukaryotes and prokaryotes. Mol Biol Evol 2004; 21: 2149-60.

Shilling R, Balakrishnan L, Shahi S, Venter H, van Veen H. A new dimer interface for an ABC transporter. Int J Antimicrob Agents 2003; 22: 200-4.

Paulsen I, Brown M, Skurray R. Proton-dependent multidrug efflux systems. FEMS Microbiol Rev 1996; 60: 575-608.

Van Bambeke F, Pages J, Lee V. Inhibitors of bacterial efflux pumps as adjuvants in antibiotic treat- ments and diagnostic tools for detection of resistance by efflux. Recent Pat Antiinfect Drug Discov 2006, 1: 157-75.

Aeschlimann J. The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other gram-negative bacteria. Pharmacotherapy 2003; 23: 916–24.

Mesaros N, Van Bambeke F, Glupczynski Y, Vanhoof R, Tulkens P. L’Efflux des antibiotiques: Un mécanisme ubiquitaire conduisant à la résistance. Etat de la question el implications microbiologiques et cliniques. Louvain Medical 2005; 124, 8: 308-20.

Nikaido H. Multidrug efflux pumps of gramnegative bacteria. J Bacteriol 1996; 178: 5853-59.

Pos K. Drug transport mechanism of the AcrB efflux pump. Biochim Biophys Acta 2009; 1794: 782-93.

Piddock L. Clinically relevant chromosomally en- coded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 2006; 19: 382-402.

Olliver A, Valle M, Chaslus-Dancla E, Cloeckaert A. Role of an acrR mutation in multidrug resistance of in vitro-selected fluoroquinolone-resistant mutants of Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 2004; 238: 267-72.

Pradel E, Pagès J. The AcrAB-TolC pump con- tributes to multidrug resistance in the nosocomial pathogen Enterobacter aerogenes. Antimicrob Agents Chemother 2002; 46: 2640-43.

Putman M, van Veen H, Konings W. Molecular properties of bacterial multidrug transporters. Micro- biol Mol Biol Rev 2000; 64: 672- 93.

Randall L, Ridley A, Cooles S, Sharma M, Sayers A, Pumbwe L et al. Prevalence of multiple antibiotic resistance in 443 Campylobacter spp. isolated from humans and animals. J Antimicrob Chemother 2003; 52: 507–10.

Noguchi N, Okada H, Narui K, Sasatsu M. Com- parison of the nucleotide sequence and expression of norA genes and microbial susceptibility in 21 strains of Staphylococcus aureus. Microbial Drug Resistance 2004; 10: 197–203.

Okamoto K, Gotoh N, Nishino T. Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: penem resistance mechanisms and their interplay. Antimicrob Agents Chemother 2001; 45:1964–71.

Bornet C, Davin-Régli A, Bosi C, Pagès J, Bollet C. Imipenem resistance of Enterobacter aerogenes medi- ated by outer membrane permeability. J Clin Microbiol 2000; 38: 1048-52.

Mazzariol A, Cornaglia G, Nikaido H. Contributions of the AmpC β-lactamase and the AcrAB multidrug efflux system in intrinsic resistance of Escherichia coli k-12 to β-lactams. Antimicrob Agents Chemother 2000; 44: 1387–90.

Lomovskaya O, Lee A, Hoshino K, Ishida H, Mistry A, Warren M et al. Use of a genetic approach to evalu- ate the consequences of inhibition of efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1999; 43: 1340–46.

Ziha-Zarifi I, Llanes C, Kohler T, Pechere JC, Plesiat P. In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA-MexB-OprM. Antimicrob Agents Chemother 1999; 43: 287-91.

Kriengkauykiat J, Porter E, Lomovskaya O. Use of an efflux pump inhibitor to determine the prevalence of efflux pump-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2005; 49: 565-70.

Cho D, Blais J, Tangen K, Ford C, Lee A, Lomovs- kaya O et al. Prevalence of efflux pump overexpression among clinical isolates of Pseudomonas aeruginosa. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, 1999, Abstract 1267, p 327, San Francisco, CA.

Elkins C, Nikaido H. Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Es- cherichia coli is determined predominantly by two large periplasmic loops. J Bacteriol 2002; 184: 6490–98.

Everett M, Jin Y, Ricci V, Piddock L. Contribution of individual mechanisms to fluoroquinolone resis- tance in 36 Escherichia coli isolates from humans and animals. Antimicrob Agents Chemother 1996; 40: 2380-86.

Nikaido E, Yamaguchi A, Nishino K. AcrAB mul- tidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environ- mental signals. J Biol Chem 2008; 283: 24245–53.

Baucheron S, Tyler S, Boyd D, Mulvey M, Chaslus- Dancla E, Cloeckaert A. AcrAB-TolC directs efflux- mediated multidrug resistance in Salmonella enterica serovar Typhimurium DT104. Antimicrob Agents Chemother 2004; 48: 3729-35.

Lin J, Martinez A. Effect of efflux pump inhibitors on bile resistance and in vivo colonization of Campy- lobacter jejuni. J Antimicrob Chemother 2006; 58: 966–72.

Pumbwe L, Randall L, Woodward M, Piddock L. Expression of the efflux pump genes cmeB, cmeF and the porin gene porA in multiply antibiotic-resistant Campylobacter spp. J Antimicrob Chemother 2004; 54: 341-47.

Visalli M, Murphy E, Projan S, Bradford P. AcrAB multidrug efflux pump is associated with reduced levels of

susceptibility to tigecycline (GAR-936) in. Proteus mirabilis. Antimicrob Agents Chemother 2003; 47: 665-9.

Kern W, Oethinger M, Jellen-Ritter A. Non-target gene mutations in the development of fluoroquinolone resistance in Escherichia coli. Antimicrob Agents Chemother 2000; 44: 10-13.

Oethinger M, Kern W, Jellen-Ritter A. Ineffective- ness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB efflux pump. Antimi- crob Agents Chemother 2000; 44: 814-20.

Bohnert J, Kern W. Selected arylpiperazines are capable of reversing multidrug resistance in Escheri- chia coli overexpressing RND efflux pumps. Antimicrob Agents Chemother 2005; 49: 849–52.

Chevalier J, Bredin J, Mahamoud A. Inhibitors of antibiotic efflux in resistant Enterobacter aerogenes and Klebsiella pneumoniae strains. Antimicrob Agents Chemother 2004; 48: 1043-46.

Hannula M, Hänninen M. Effect of putative efflux pump inhibitors and inducers on the antimicrobial susceptibility of Campylobacter jejuni and Campy- lobacter coli. J Med Microbiol 2008; 57: 851–55.

Hendricks O, Butterworth T, Kristiansen J. The in-vitro antimicrobial effect of non-antibiotics and putative inhibitors of efflux pumps on Pseudomonas aeruginosa and Staphylococcus aureus. Int J Antimi- crob Agents 2003; 22: 262-64.

Sáenz Y, Ruiz J, Zarazaga M, Teixidó M, Torres C, Vila J. Effect of the efflux pump inhibitor Phe-Arg-β- naphthylamide on the MIC values of the quinolones, tetracycline and chloramphenicol, in Escherichia coli isolates of different origin. J Antimicrob Chemother 2004; 53: 544-45.

Schumacher A, Steinke P, Bohnert J, Akova M, Jonas D, Kern W. Effect of 1-(1-naphthylmethyl)- piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Enterobacteriaceae other than Escherichia coli. J Antimicrob Chemother 2006; 57: 344–48.

Hasdemir U, Chevalier J, Nordmann P. Detection and prevalence of active drug efflux mechanism in vari- ous multidrug-resistant Klebsiella pneumoniae strains from Turkey. J Clin Microbiol 2004; 42: 2701-06.

Thorrold C, Letsoalo M, Dusé A, Marais E. Efflux pump activity in fluoroquinolone and tetracycline re- sistant Salmonella and E. coli implicated in reduced susceptibility to household antimicrobial cleaning agents. Int J Food Microbiol 2007; 113: 315–20.

Sáenz Y, Briñas L, Dominguez E, Ruiz J, Zarazaga M, Vila J, Torres C. Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal and food origins. Antimicrob Agents Chemother 2004; 48: 3996-4001.

Pantozzi FL, Moredo FA, Vigo GB, Giacoboni GL. Resistencia a los antimicrobianos en bacterias indica- doras y zoonóticas aisladas de animales domésticos en Argentina. Rev Argent Microbiol 2010; 42: 49-52.

Suk-Kyung L, Hee-Soo L, Hyang-Mi N, Yun-Sang C, Jong-Man K, Si-Wook S, et al. Antimicrobial resistance observed in Escherichia coli strains isolated from fecal samples of cattle and pigs in Korea during 2003–2004. Int J Food Microbiol 2007; 116: 283–86.

Elkins C, Mullis L. Substrate competition studies using whole-cell accumulation assays with the major tripartite multidrug efflux pumps of Escherichia coli. Antimicrob Agents Chemother 2007; 51: 923–29.

Publicado

2011-01-01

Como Citar

Marchetti, M., Errecalde, . J., & Mestorino, N. (2011). Resistencia bacteriana a los antimicrobianos ocasionada por bombas de eflujo. Impacto en la multiresistencia. Analecta Veterinaria, 31(2), 40–53. Recuperado de https://revistas.unlp.edu.ar/analecta/article/view/12392

Edição

Seção

Revisiones bibliográficas