Cómo la inteligencia artificial motiva la transformación e investigación de la nueva realidad turística
DOI:
https://doi.org/10.24215/27186717e049Palabras clave:
digitalización, disrupción, innovación, inteligencia artificial, turismo inteligenteResumen
Ante el avance y normalización del uso de tecnologías “disruptivas” como la inteligencia artificial, el sector turístico –junto al resto de actividades económicas– deberá hacer una profunda revisión para adaptarse al nuevo contexto. En este artículo se lleva a cabo una revisión del estado de la cuestión de esta adaptación a la llamada IV Revolución Industrial, que según los expertos plantea una transformación casi absoluta en términos de procesos empresariales, investigación, regulación e interacción entre destino y turista. Como principal aporte, se expone el nuevo ciclo de investigaciones turísticas a la que está conduciendo este nuevo panorama socioeconómico.
Descargas
Citas
Abdou, M., Musabanganji, E. y Musahara, H. (2022). Determinants of tourism demand using machine learning techniques. African Journal of Hospitality, Tourism and Leisure, 11(2), 770-780.
Abbruzzo, A., Brida, J. G. y Scuderi, R. (2014). Scad-elastic net and the estimation of individual tourism expenditure determinants. Decision Support Systems, 66, 52-60. https://doi.org/10.1016/j.dss.2014.06.003
Agrawal, A., Gans, J. y Goldfarb, A. (2019). Economic policy for artificial intelligence. Innovation Policy and the Economy, 19(1), 139-159. https://doi.org/10.1086/699935
Anwar, S. T. (2018). Growing global in the sharing economy: Lessons from Uber and Airbnb. Global Business and Organizational Excellence, 37(6), 59-68. https://doi.org/10.1002/joe.21890
Ardito, L., Cerchione, R., Del Vecchio, P. y Raguseo, E. (2019). Big data in smart tourism: challenges, issues and opportunities. Current Issues in Tourism, 22(15), 1805-1809. https://doi.org/10.1080/13683500.2019.1612860
Benckendorff, P., Tussyadiah, I. P. y Scarles, C. (24-26 de enero de 2018). The role of digital technologies in facilitating intergenerational learning in heritage tourism. En B. Stangl y J. Pesonen (Eds.), Information and communication technologies in tourism 2018: Proceedings of the international conference (pp. 463-472). Springer International Publishing. https://doi.org/10.1007/978-3-319-72923-7_35
Benckendorff, P. J., Xiang, Z. y Sheldon, P. J. (2019). Tourism information technology (3ª ed.).CABI International.
Bowen, J. y Whalen, E. (2017). Trends that are changing travel and tourism. Worldwide Hospitality and Tourism Themes, 9(6), 592-602. https://doi.org/10.1108/WHATT-09-2017-0045
Brida, J. G., Lanzilotta, B., Moreno, L. y Santiñaque, F.. (2018). A non-linear approximation to the distribution of total expenditure distribution of cruise tourists in Uruguay. Tourism Management, 69, 62-68. https://doi.org/10.1016/j.tourman.2018.05.006
Buhalis, D., Harwood, T., Bogicevic, V., Viglia, G., Beldona, S. y Hofacker, C. (2019). Technological disruptions in services: Lessons from tourism and hospitality. Journal of Service Management, 30(4), 484-506. https://doi.org/10.1108/JOSM-12-2018-0398
Chang, C. y Li, S. (2020). Study of price determinants of sharing economy-based accommodation services: Evidence from Airbnb.com. Journal of Theoretical and Applied Electronic Commerce Research, 16(4), 584-601. https://doi.org/10.3390/jtaer16040035
Chattopadhyay, M. y Mitra, S. K. (2020). What Airbnb host listings influence peer-to-peer tourist accommodation price? Journal of Hospitality & Tourism Research, 44(4), 597-623. https://doi.org/10.1177/1096348020910211
Cheng, M. y Foley, C. (2018). The sharing economy and digital discrimination: The case of Airbnb. International Journal of Hospitality Management, 70, 95-98. https://doi.org/10.1016/j.ijhm.2017.11.002
Christian, M., Fernandez-Stark, K., Ahmed, G. y Gereffi, G. (2011). The tourism global value chain. Economic upgrading and workforce development. En G. Gereffi, K. Fernandez-Stark y P. Psilos (Eds.), Skills for upgrading: Workforce development and global value chains in developing countries (pp. 190-238). Duke University.
Claveria, O. y Torra, S. (2014). Forecasting tourism demand to Catalonia: Neural networks vs. time series models. Economic Modelling, 36, 220-228. https://doi.org/10.1016/j.econmod.2013.09.024
Coca-Stefaniak, J. A. y Seisdedos, G. (2020). Smart urban tourism destinations at a crossroads: Being “smart” and urban are no longer enough. En A. M. Morrison y A. Coca-Stefaniak (Eds.), Routledge handbook of tourism cities (pp. 359-373), Routledge.
Cooper, C. (2006). Knowledge management and tourism. Annals of Tourism Research, 33(1), 47-64. https://doi.org/10.1016/j.annals.2005.04.005
Correa, P. R., Valencia-Arias, A., Garcés-Giraldo, L. F., Rodríguez, L. D. R. C., López, G. A. M. y Benjumea-Arias, M. (2023). Tendencias en el uso de inteligencia artificial en el sector del turismo. Journal of Tourism & Development, 40, 81-92. https://doi.org/10.34624/rtd.v40i0.31447
Doborjeh, Z., Hemmington, N., Doborjeh, M. y Kasabov, N. (2021). Artificial intelligence: A systematic review of methods and applications in hospitality and tourism. International Journal of Contemporary Hospitality Management, 34(3), 1154-1176. https://doi.org/10.1108/IJCHM-06-2021-0767
Dredge, D., Phi, G., Mahadevan, R., Meehan, E. y Popescu, E. S. (2018). Digitalisation in Tourism. In depth analysis of challenges and opportunities. Low Value procedure GRO-SME-17-C-091-A for Executive Agency for Small and Medium-sized Enterprises (EASME) Virtual Tourism Observatory. Aalborg University.
Gasson, S. (2006). The impact of e-commerce technology on the air travel industry. En D. B. A. Khosrow-Pour (Ed.), Cases on electronic commerce technologies and applications (pp. 341-356). IGI Global. https://doi.org/10.4018/978-1-59904-402-6.ch020
Gretzel, U. y Stankov, U. (2021). ICTs and well-being: Challenges and opportunities for tourism. Information Technology & Tourism, 23(1), 1-4. https://doi.org/10.1007/s40558-021-00198-2
Grundner, L. y Neuhofer, B. (2021). The bright and dark sides of artificial intelligence: A futures perspective on tourist destination experiences. Journal of Destination Marketing & Management, 19, 100511. https://doi.org/10.1016/j.jdmm.2020.100511
Halkier, H., Kozak, M. y Svensson, B. (2014). Innovation and tourism destination development. European Planning Studies, 22(8), 1547-1550. https://doi.org/10.1080/09654313.2013.784571
Henseler, J., Müller, T. y Schuberth, F. (2018). New Guidelines for the use of PLS path modeling in hospitality, travel, and tourism research. En F. Ali, S. M. Rasoolimanesh y C. Cobanoglu (Eds.), Applying partial least squares in tourism and hospitality research (pp. 17-33). Emerald Publishing Limited. https://doi.org/10.1108/978-1-78756-699-620181002
Hjalager, A. M. (2002). Repairing innovation defectiveness in tourism. Tourism Management, 23(5), 465-474. https://doi.org/10.1016/S0261-5177(02)00013-4
Hu, Y., Shao, L., La, L. y Hua, H. (13-15 de septiembre de 2021). Using investor and news sentiment in tourism stock price prediction based on XGBoost Model [Ponencia]. 2021 IEEE/ACIS 6th international conference on big data, cloud computing, and data science (BCD) (pp. 20-24). IEEE. https://doi.org/10.1109/BCD51206.2021.9581619
Imhanwa, S., Greenhill, A. y Owrak, A. (2015). Relevance of cloud computing: A case for UK small and medium sized tourism firms. GSTF Journal on Computing (JoC), 4, 1-6. https://doi.org/10.7603/s40601-014-0013-9
Işık, C., Küçükaltan, E. G., Taş, S., Akoğul, E., Uyrun, A., Hajiyeva, T., Turan, B., Dirbo, A. y Bayraktaroğlu, E. (2019). Tourism and innovation: A literature review. Journal of Ekonomi, 1(2), 98-154. https://dergipark.org.tr/tr/pub/ekonomi/issue/50958/669185
Kalehbasti, P. R., Nikolenko, L. y Rezaei, H. (2021). Airbnb price prediction using machine learning and sentiment analysis. En A. Holzinger, P. Kieseberg, A. M. Tjoa, y E. Weippl, E. (Eds.), Machine learning and knowledge extraction. CD-MAKE 2021. Lecture notes in computer science (Vol. 12844). Springer. https://doi.org/10.1007/978-3-030-84060-0_11
Kırtıl, İ. G. y Aşkun, V. (2021). Artificial intelligence in tourism: A review and bibliometrics research. Advances in Hospitality and Tourism Research (AHTR), 9(1), 205-233. https://doi.org/10.30519/ahtr.801690
Kontogianni, A., Alepis, E. y Patsakis, C. (2022). Smart tourism and artificial intelligence: Paving the way to the post-covid-19 era. En M. Virvou, G. A. Tsihrintizis, L. H. Tsoukalas, y L. C. Jain, (Eds.), Advances in artificial intelligence-based technologies: Selected papers in honour of Professor Nikolaos G. Bourbakis (Vol. 1, pp. 93-109). Springer. https://doi.org/10.1007/978-3-030-80571-5_7
Kwok, L., Tang, Y. y Yu, B. (2020). The 7 Ps marketing mix of home-sharing services: Mining travelers’ online reviews on Airbnb. International Journal of Hospitality Management, 90, 102616. https://doi.org/10.1016/j.ijhm.2020.102616
Le, T. H., Arcodia, C., Novais, M. A. y Kralj, A. (2021). Proposing a systematic approach for integrating traditional research methods into machine learning in text analytics in tourism and hospitality. Current Issues in Tourism, 24(12), 1640-1655. https://doi.org/10.1080/13683500.2020.1829568
Lee, C. C., Chen, M. P., Wu, W. y Xing, W. (2021). The impacts of ICTs on tourism development: International evidence based on a panel quantile approach. Information Technology & Tourism, 23, 509-547. https://doi.org/10.1007/s40558-021-00215-4
Li, Y. y Cao, H. (2018). Prediction for tourism flow based on LSTM neural network. Procedia Computer Science, 129, 277-283. https://doi.org/10.1016/j.procs.2018.03.076
Li, J., Xu, L., Tang, L., Wang, S. y Li, L. (2018). Big data in tourism research: A literature review. Tourism Management, 68, 301-323. https://doi.org/10.1016/j.tourman.2018.03.009
Loureiro, S. M. C., Guerreiro, J. y Tussyadiah, I. (2021). Artificial intelligence in business: State of the art and future research agenda. Journal of Business Research, 129, 911-926. https://doi.org/10.1016/j.jbusres.2020.11.001
Makridakis, S. (2017). The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms. Futures, 90, 46-60. https://doi.org/10.1016/j.futures.2017.03.006
Más-Ferrando, A., Ramón-Rodríguez, A. B. y Aranda Cuéllar, P. (2020). La revolución digital en el sector turístico. Oportunidad para el turismo en España. Ekonomiaz, 98, 228-251 http://hdl.handle.net/10045/111464
Más-Ferrando, A. (2023). Economía de la innovación y la digitalización del turismo: un estudio del mercado de Airbnb aplicando técnicas econométricas y redes neuronales [Tesis de Doctorado, Universidad de Alicante]. http://hdl.handle.net/10045/134842
Más-Ferrando, A., Moreno-Izquierdo, L., Perles-Ribes, J. F. y Rubia, A. (2024). Has COVID-19 changed the factors explaining the occupancy of Airbnb accommodation? Madrid as a case study. Journal of Destination Marketing & Management, 31, 100837. https://doi.org/10.1016/j.jdmm.2023.100837
Mietus Jr., J. R. (1989). European Community regulation of airline computer reservation systems. Law and Policy in International Business., 21, 93.
Moreno-Izquierdo, L., Ramón-Rodríguez, A. B. y Such Devesa, M. J. (2018). The challenge of long-term tourism competitiveness in the age of innovation: Spain as a case study. Investigaciones Regionales - Journal of Regional Research, 42, 13-34 http://hdl.handle.net/10045/86771
Moreno-Izquierdo, L., Egorova, G., Peretó Rovira, A. y Más-Ferrando, A. (2018). Exploring the use of artificial intelligence in price maximisation in the tourism sector: Its application in the case of Airbnb in the Valencian Community. Investigaciones Regionales - Journal of Regional Research, 42, 113-128. http://hdl.handle.net/10045/86772
Moreno-Izquierdo, L., y Pedreño-Muñoz, A. (2020). Europa frente a EE. UU. y China. Prevenir el declive en la era de la inteligencia artificial. KDP Publishing.
Moreno-Izquierdo, L., Ramón-Rodríguez, A.B. y Más-Ferrando, A. (2022). Digitalization and the transformation of tourism economics. En Z. Xiang, M. Fuchs, U. Gretzel y W. Höpken (Eds.), Handbook of e-Tourism (pp. 173–191). Springer, Cham. https://doi.org/10.1007/978-3-030-48652-5_139
Moreno-Izquierdo, L., Más-Ferrando, A. y Súarez-Tostado, M. (2022). Innovación y disrupción digital en el turismo. De las TICs a la era de la inteligencia artificial. En A. B. Ramón-Rodríguez y M. J. Such-Devesa (Eds.), La economía del turismo (pp. 333-368). Editorial Universidad de Alcalá y Universidad de Alicante.
Moreno-Izquierdo, L., Más-Ferrando, A., Suárez-Tostado, M. y Ramón-Rodríguez, A.B. (2022). Reinvención del turismo en clave de Inteligencia Artificial. Apuntes Fundación de Estudios de Economía Aplicada, 2022/19. https://documentos.fedea.net/#documento/ap2022-19
Moreno-Izquierdo, L., Más-Ferrando, A., Perles-Ribes, J. F., Rubia-Serrano, A. y Torregrosa-Martí, T. (2023). Evaluating machine learning techniques for predicting tourist occupancy: An experiment with pre-and post-pandemic COVID-19 data. Current Issues in Tourism, 1-16. https://doi.org/10.1080/13683500.2023.2282163
Nadda, V., Chaudhary, H. S. y Arnott, I. (2020). Cloud computing in tourism. En J. Duarte-Santos y O. Lima-Silva (Eds.), Digital marketing strategies for tourism, hospitality, and airline industries (pp. 141-155). IGI Global. https://doi.org//10.4018/978-1-5225-9783-4.ch007
Nagar, D., Raghav, S., Bhardwaj, A., Kumar, R., Singh, P. L. y Sindhwani, R. (2021). Machine learning: Best way to sustain the supply chain in the era of industry 4.0. Materials Today: Proceedings, 47, 3676-3682. https://doi.org/10.1016/j.matpr.2021.01.267
Narangajavana Kaosiri, Y., Callarisa Fiol, L. J., Moliner Tena, M. A., Rodríguez Artola, R. M. y Sanchez Garcia, J. (2019). User-generated content sources in social media: A new approach to explore tourist satisfaction. Journal of Travel Research, 58(2), 253-265. https://doi.org/10.1177/0047287517746014
Nieto-Mengotti, M., López-Arranz, A. y Novo-Corti, I. (2019). Smart city as a platform economy: Civic engagement and self-employment in focus. En A. Visvizi y D. M. Lytras (Eds.), Smart Cities: Issues and Challenges (pp. 63-76). Elsevier. https://doi.org/10.1016/B978-0-12-816639-0.00005-3
Novovic Buric, M., Jaksic Stojanovic, A., Lalevic Filipovic, A. y Kascelan, L. (2022). Research of attitudes toward implementation of green accounting in tourism industry in Montenegro-Practices, and challenges. Sustainability, 14(3), 1725. https://doi.org/10.3390/su14031725
Pearce, P. L. y Butler, R.W. (1993). Fundamentals of tourist motivation. En D. Pearce y R. W. Butler (Eds.), Tourism research: Critiques and challenges (pp. 113-134). Routledge.
Pencarelli, T. (2020). The digital revolution in the travel and tourism industry. Information Technology & Tourism, 22(3), 455-476. https://doi.org/10.1007/s40558-019-00160-3
Peng, R., Lou, Y., Kadoch, M. y Cheriet, M. (2020). A human-guided machine learning approach for 5G smart tourism IoT. Electronics, 9(6), 947. https://doi.org/10.3390/electronics9060947
Pereira, J. M., Basto, M. y da Silva, A. F. (2016). The logistic lasso and ridge regression in predicting corporate failure. Procedia Economics and Finance, 39, 634-641. https://doi.org/10.1016/S2212-5671(16)30310-0
Porto, N. y de la Vega, P. (2023). Employment and Teleworking in the Argentine Tourism Sector: a Case Study Based on the COVID-19 Pandemic. Journal of the Knowledge Economy. https://doi.org/10.1007/s13132-023-01239-3
Reinhold, S., Zach, F.J. y Laesser, C. (2022). E-business models in tourism. En Z. Xiang, M. Fuchs, U. Gretzel y W. Höpken (Eds.), Handbook of e-Tourism (pp. 1181–1210). Springer. https://doi.org/10.1007/978-3-030-48652-5_71
Rivera, M. A. (2020). Hitting the reset button for hospitality research in times of crisis: Covid19 and beyond. International Journal of Hospitality Management, 87, 102528. https://doi.org/10.1016%2Fj.ijhm.2020.102528
Romero-Insuasti, H. U. (21-23 de septiembre de 2022). Inteligencia artificial: ¿futuro o presente del turismo? Memorias. IV Congresso Internacional, Universidad Estatal Península de Santa Elena, Facultad de Ciencias de la Educación e Idiomas. Edgard Blücher Ltda.
Samara, D., Magnisalis, I. y Peristeras, V. (2020). Artificial intelligence and big data in tourism: A systematic literature review. Journal of Hospitality and Tourism Technology, 11(2), 343-367. https://doi.org/10.1108/JHTT-12-2018-0118
Sangkaew, N. y Zhu, H. (2022). Understanding tourists’ experiences at local markets in Phuket: An analysis of TripAdvisor reviews. Journal of Quality Assurance in Hospitality & Tourism, 23(1), 89-114. https://doi.org/10.1080/1528008X.2020.1848747
Shanker, D. (2008). ICT and tourism: Challenges and opportunities. En Proceedings of the International Conference on Tourism in India–Challenges Ahead (pp. 50-58). Indian Institute of Management Kozhikode.
Sigala, M. (2018). New technologies in tourism: From multi-disciplinary to anti-disciplinary advances and trajectories. Tourism Management Perspectives, 25, 151-155. https://doi.org/10.1016/j.tmp.2017.12.003
Sigala, M., Rahimi, R. y Thelwall, M. (2019). Big data and innovation in tourism, travel, and hospitality. Springer.
Shrestha, D., Wenan, T., Gaudel, B., Rajkarnikar, N. y Jeong, S. R. (2022). Multi-dimensional analysis and prediction model for tourist satisfaction. KSII Transactions on Internet and Information Systems (TIIS), 16(2), 480-502. http://doi.org/10.3837/tiis.2022.02.007
Sotiriadis, M. (2018). Evolving destination and business relationships in online distribution channels: Disintermediation and re-intermediation. En D. Gursoy y C. Chi (Eds.), The Routledge Handbook of Destination Marketing (pp. 488-501). Routledge.
Stabler, M. y Sinclair, M. T. (1997). The economics of tourism. Routledge. https://doi.org/10.4324/9780203195437
Stabler, M. J., Papatheodorou, A. y Sinclair, M. T. (2009). The economics of tourism. Routledge. https://doi.org/10.4324/9780203864272
Stamboulis, Y. y Skayannis, P. (2003). Innovation strategies and technology for experience-based tourism. Tourism Management, 24(1), 35-43. https://doi.org/10.1016/S0261-5177(02)00047-X
Stefko, R., Fedorko, R., Bacik, R., Rigelsky, M. y Olearova, M. (2020). Effect of service quality assessment on perception of TOP hotels in terms of sentiment polarity in the Visegrad group countries. Oeconomia Copernicana, 11(4), 721-742. https://doi.org/10.24136/oc.2020.029
Sun, J., Yan, J. y Zhang, K. Z. (2016). Blockchain-based sharing services: What blockchain technology can contribute to smart cities. Financial Innovation, 2(1), 1-9. https://doi.org/10.1186/s40854-016-0040-y
Tapak, L., Abbasi, H. y Mirhashemi, H. (2019). Assessment of factors affecting tourism satisfaction using K-nearest neighborhood and random forest models. BMC Research Notes, 12(1), 1-5. https://doi.org/10.1186/s13104-019-4799-6
Thomas, R. y Wood, E. (2014). Innovation in tourism: Re-conceptualising and measuring the absorptive capacity of the hotel sector. Tourism Management, 45, 39-48. https://doi.org/10.1016/j.tourman.2014.03.012
Tian, F., Yang, Y., Mao, Z. y Tang, W. (2021). Forecasting daily attraction demand using big data from search engines and social media. International Journal of Contemporary Hospitality Management, 33(6), 1950-1976. https://doi.org/10.1108/IJCHM-06-2020-0631
Treiblmaier, H. (2022). Blockchain and tourism. En Z. Xiang, M. Fuchs, U. Gretzel W. Höpken (Eds.), Handbook of e-Tourism (pp. 475–495). Springer. https://doi.org/10.1007/978-3-030-48652-5_28
Tussyadiah, I. P. y Pesonen, J. (2016). Impacts of peer-to-peer accommodation use on travel patterns. Journal of Travel Research, 55(8), 1022-1040. https://doi.org/10.1177/0047287515608505
Verma, A. y Shukla, V. (26-28 de febrero de 2019). Analyzing the influence of IoT in Tourism Industry. Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India. https://dx.doi.org/10.2139/ssrn.3358168
Williams, A. M. (2014). Tourism innovation. En A.A. Lew, C.M. Hall y A.M. Williams (Eds.). The Wiley Blackwell companion to tourism (pp. 168-178), https://doi.org/10.1002/9781118474648.ch13
Wu, D. C. W., Ji, L., He, K. y Tso, K. F. G. (2021). Forecasting tourist daily arrivals with a hybrid Sarima–Lstm approach. Journal of Hospitality & Tourism Research, 45(1), 52-67. https://doi.org/10.1177/1096348020934046
Xue, C., Tian, W. y Zhao, X. (2020). The literature review of platform economy. Scientific Programming, 1-7. https://doi.org/10.1155/2020/8877128
Yadegaridehkordi, E., Nilashi, M., Nasir, M. H. N. B. M., Momtazi, S., Samad, S., Supriyanto, E.y Ghabban, F. (2021). Customers segmentation in eco-friendly hotels using multi-criteria and machine learning techniques. Technology in Society, 65, 101528. https://doi.org/10.1016/j.techsoc.2021.101528
Zhang, B., Li, N., Shi, F., y Law, R. (2020). A deep learning approach for daily tourist flow forecasting with consumer search data. Asia Pacific Journal of Tourism Research, 25(3), 323-339. https://doi.org/10.1080/10941665.2019.1709876
Zsarnockzy, M. (2017). How does Artificial Intelligence affect the Tourism Industry? VADYBA, 31(2), 85-90.
Zubiaga, M., Izkara, J. L., Gandini, A., Alonso, I. y Saralegui, U. (2019). Towards smarter management of overtourism in historic centres through visitor-flow monitoring. Sustainability, 11(24), 7254. https://doi.org/10.3390/su11247254
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Adrián Más Ferrando, Luis Moreno Izquierdo, Veronica Segarra

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Creative Commons Atribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0) que permite a terceros compartir la obra y crear una nueva a partir de esta, siempre que se indique su autor y que esté bajo la misma licencia.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada.