Arqueoproteómica como complemento de estudios paleopatológicos en restos óseos humanos de la Cueva de Plaza, Chubut, Argentina: alcances y limitaciones

Autores/as

  • Ricardo Martín Neme Tauil Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro de Estudios Químicos y Biológicos por Espectrometría de Masa (CEQUIBIEM), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Universidad de Buenos Aires (UBA). https://orcid.org/0000-0001-8018-6068
  • Denise Evans Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación. Instituto Nacional de Antropología y Pensamiento Latinoamericano (INAPL). https://orcid.org/0000-0002-9936-0780
  • Paula Miranda De Zela Banco Nacional de Datos Genéticos (BNDG). https://orcid.org/0000-0003-1335-3473
  • Silvia Moreno Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro de Estudios Químicos y Biológicos por Espectrometría de Masa (CEQUIBIEM), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Universidad de Buenos Aires (UBA). https://orcid.org/0000-0003-3876-2951
  • Fabián Crespo Department of Anthropology, Center of Archaeology and Cultural Heritage, University of Louisville, KY, EEUU https://orcid.org/0000-0002-4923-7338
  • Vivian Scheinsohn Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro de Estudios Químicos y Biológicos por Espectrometría de Masa (CEQUIBIEM), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Universidad de Buenos Aires (UBA). https://orcid.org/0000-0002-6097-331X

DOI:

https://doi.org/10.24215/18536387e062

Palabras clave:

proteómica, bioarqueología, paleopatología, Pampa-Patagonia

Resumen

En este trabajo se propone realizar por primera vez en Argentina un análisis proteómico por espectrometría de masas de una falange humana con una alteración macroscópica proveniente de un conjunto arqueológico recuperado en el sitio Cueva de Plaza (Chubut, Argentina). Se presentan dos métodos de extracción de proteínas de restos óseos arqueológicos para ser analizadas con un espectrómetro de masas. Ambos métodos permitieron obtener resultados no excluyentes con información parcialmente redundante y complementaria. Se identificaron proteínas como colágenos, fibronectina, proteínas de cartílago, de hueso, de músculo y de sangre y conjuntos de proteínas asociadas al sistema inmune y a otras vías metabólicas, en menor cantidad. Las proteínas identificadas son consistentes con la existencia de un trauma en proceso de reparación en el elemento óseo analizado.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Alves, P., Arnold, R. J., Novotny, M. V., Radivojac, P., Reilly, J. P. y Tang, H. (2007). Advancement in protein inference from shotgun proteomics using peptide detectability. Pacific Symposium of Biocomputing, 409-420. https://doi.org/10.1142/9789812772435_0039

Appleby, J., Thomas, R. y Buikstra, J. (2015). Increasing confidence in paleopathological diagnosis–Application of the Istanbul terminological framework. International Journal of Paleopathology, 8, 19-21. https://doi.org/10.1016/j.ijpp.2014.07.003

Behar, S. M., Martin, C. J., Booty, M. G., Nishimura, T., Zhao, X., Gan, H. X., Divangahi, M. y Remold, H. G. (2011). Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal immunology, 4(3), 279-287. https://doi.org/10.1038/mi.2011.3

Bona, A., Papai, Z., Maasz, G., Toth, G. A., Jambor, E., Schmidt, J., Toth, C., Farkas, C. y Mark, L. (2014). Mass Spectrometric Identification of Ancient Proteins as Potential Molecular Biomarkers for a 2000-Year-Old Osteogenic Sarcoma. Plos One 9(1), e87215. https://doi.org/10.1371/journal.pone.0087215

Bue, M., Bergholt, N., Kruse Jensen, L., Jensen, H., Søballe, H., Stilling, M. y Hanberg, P. (2020). Inflammatory proteins in infected bone tissue – An explorative porcine study, Bone Reports, 13, 100292. https://doi.org/10.1016/j.bonr.2020.100292

Buonasera, T., Eerkens, J., de Flamingh, A., Engbring, L., Yip, J., Li, H., Haas, R., DiGiuseppe, D., Grant, D., Salemi, M., Nijmeh, C., Arellano, M., Leventhal, A., Phinney, B., Byrd, B., Malhi, R. y Parker, G. (2020). A comparison of proteomic, genomic, and osteological methods of archaeological sex estimation. Scientific reports, 10(1), 1-15. https://doi.org/10.1038/s41598-020-68550-w

Cappellini, E., Prohaska, A., Racimo, F., Welker, F., Pedersen, W., Allentoft, E., Damgaard, P., Gutenbrunner, P., Dunne, J., Hammann,S., Roffet-Salque, M., Ilardo, M., J. Moreno-Mayar, V., Wang, Y., Sikora, M., Vinner, L., Cox, J., Evershed, R. y Willerslev, E. (2018). Ancient biomolecules and evolutionary inference. Annual Review of Biochemistry, 87, 1029-1060. https://doi.org/10.1146/annurev-biochem-062917-012002

Colgrave, M. L., Allingham, P. G., Tyrrell, K. y Jones, A. (2019). Multiple Reaction Monitoring for the Accurate Quantification of Amino Acids: Using Hydroxyproline to Estimate Collagen Content. Molecular Biology, 2030, 33-45. https://doi.org/10.1007/978-1-61779-445-2_23

Currey, J. D. (1984). The Mechanical Adaptation of Bone. Princeton: University Press.

Csapo, R., Gumpenberger, M. y Wessner, B. (2020). Skeletal Muscle Extracellular Matrix - What Do We Know About Its Composition, Regulation, and Physiological Roles? A Narrative Review. Frontiers in physiology, 11, 253, 1-15. https://doi.org/10.3389/fphys.2020.00253

Epsley, S., Tadros, S., Farid, A., Kargilis, D., Mehta, S. y Rajapakse, C. S. (2021). The effect of inflammation on bone. Frontiers in physiology, 1695. https://doi.org/10.3389/fphys.2020.511799

Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P., Haw, R., Jassal, B., Korninger, F., May, B., Milacic, M., Duenas Roca, C., Rothfels, K., Sevilla, C., Shamovsky, V., Shorser, S., Varusai, T., Viteri, G., Weiser, J., Wu, G., Stein, L., Hermjakob, H. y D’Eustachio, P. (2018). The reactome pathway knowledgebase. Nucleic Acids Research, 46(D1), D649-D655. https://doi.org/10.1093/nar/gkx1132

Fernández-Tresguerres-Hernández-Gil, I., Alobera Gracia, M. A., del Canto Pingarrón, M. y Blanco Jerez, L. (2006). Physiological bases of bone regeneration I. Histology and physiology of bone tissue. Medicina Oral, Patología Oral y Cirugía Bucal, 11, E47-51. http://hdl.handle.net/10550/63573

Hasegawa, T. y Ishii, M. (2020). Visualizing bone tissue in homeostatic and pathological conditions. Proceedings of the Japan Academy, Series B, 96(2), 43-49. https://doi.org/10.2183/pjab.96.004

Hendy, J., Welker, F., Demarchi, B., Speller, C., Warinner, C. y Collins, M. J. (2018). A guide to ancient protein studies. Nature Ecology & Evolution, 2(5), 791-799. https://doi.org/10.1038/s41559-018-0510-x

Hill, R. C., Wither, M. J., Nemkov, T., Barrett, A., D'Alessandro, A., Dzieciatkowska, M. y Hansen, K. C. (2015). Preserved proteins from extinct Bison latifrons identified by tandem mass spectrometry; hydroxylysine glycosides are a common feature of ancient collagen. Molecular & Cellular Proteomics, 14(7), 1946-1958. https://doi.org/10.1074/mcp.M114.047787

Hodges, J. A. y Raines, R. T. (2003). Stereoelectronic effects on collagen stability: the dichotomy of 4-fluoroproline diastereomers. Journal of the American Chemical Society, 125(31), 9262-9263. https://doi.org/10.1021/ja035881z

Ishihama, Y., Oda, Y., Tabata, T., Sato, T., Nagasu, T., Rappsilber, J. y Mann, M. (2005). Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequence11d Peptides per Protein. Molecular & Cellular Proteomics, 4(9), 1265-1272

Johnson, E. (1985). Current Developments in Bone Technology. Advances in Archaeological Method and Theory, 8, 157–235. https://doi.org/10.1074/mcp.M500061-MCP200

Kovtun, A., Messerer, D., Scharffetter-Kochanek, K., Huber-Lang, M. e Ignatius, A. (2018). Neutrophils in Tissue Trauma of the Skin, Bone, and Lung: Two Sides of the Same Coin. Journal of immunology research, 8173983, 1-12. https://doi.org/10.1155/2018/8173983

Kovtun A., Bergdolt, S., Wiegner, R., Radermacher, P., Huber-Lang, M. e Ignatius, A. (2016) The crucial role of neutrophil granulocytes in bone fracture healing. European Cells & Materials, 25(32), 15262. https://www.researchgate.net/profile/AnnaVikman/publication/305634678_The_crucial_role_of_neutrophil_granulocytes_in_bone_fracture_healing/links/57baa5e108ae14f440bd9330/The-crucial-role-of-neutrophil-granulocytes-in-bone-fracture-healing.pdf

Lanigan, T., Mackie, M., Feine, S., Hublin, J. J., Schmitz, R., Wilcke, A., Collins, M., Cappellini, E., Olsen, J., Taurozzi, A. y Welker, F. (2020). Multi-protease analysis of Pleistocene bone proteomes. Journal of Proteomics, 228, 103889. https://doi.org/10.1016/j.jprot.2020.103889

Leo, G., Bonaduce, I., Andreotti, A., Marino, G., Pucci, P., Colombini, M. P. y Birolo, L. (2011). Deamidation at asparagine and glutamine as a major modification upon deterioration/aging of proteinaceous binders in mural paintings. Analytical Chemistry, 83(6), 2056-2064. https://doi.org/10.1021/ac1027275

Liu, H. y Pope, R. M. (2003). The role of apoptosis in rheumatoid arthritis. Current opinion in pharmacology, 3(3), 317-322. https://doi.org/10.1016/S1471-4892(03)00037-7

Lyman, R. (1994). Vertebrate Taphonomy. Cambridge: Cambridge University Press.

Mays, S. (2018). How should we diagnose disease in palaeopathology? Some epistemological considerations. International Journal of Paleopathology, 20, 12-19. https://doi.org/10.1016/j.ijpp.2017.10.006

McGrath, K., Rowsell, K., St-Pierre, C. G., Tedder, A., Foody, G., Roberts, C., Speller, C. y Collins, M. (2019). Identifying archaeological bone via non-destructive ZooMS and the materiality of symbolic expression: examples from Iroquoian bone points. Scientific reports, 9(1), 1-10. https://doi.org/10.1038/s41598-019-47299-x

Mi, H. y Thomas, P. (2009). PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Protein Networks and Pathway Analysis, 563, 123-140. https://doi.org/ 10.1007/978-1-60761-175-2_7

Mickleburgh, H. L., Schwalbe, E. C., Bonicelli, A., Mizukami, H., Sellitto, F., Starace, S., Wescott, D., Carter, D. y Procopio, N. (2021). Human Bone Proteomes before and after Decomposition: Investigating the Effects of Biological Variation and Taphonomic Alteration on Bone Protein Profiles and the Implications for Forensic Proteomics. Journal of proteome research, 20(5), 2533-2546. https://doi.org/10.1021/acs.jproteome.0c00992

Nesvizhskii, A. I. (2007). Protein identification by tandem mass spectrometry and sequence database searching. Methods in Molecular Biology, 367, 87–119. https://doi.org/10.1385/1-59745-275-0:87

Procopio, N., Chamberlain, A. T. y Buckley, M. (2018). Exploring biological and geological age-related changes through variations in intra-and intertooth proteomes of ancient dentine. Journal of proteome research, 17(3), 1000-1013. https://doi.org/10.1021/acs.jproteome.7b00648

Ricard-Blum, S. (2011). The Collagen Family. Cold Spring Harbor perspectives in biology, 3(1), a004978, 1-19. https://doi.org/10.1101/cshperspect.a004978

Satyam, A., Graef, E. R., Lapchak, P. H., Tsokos, M. G., Dalle Lucca, J. J. y Tsokos, G. C. (2019). Complement and coagulation cascades in trauma. Acute medicine & surgery, 6(4), 329–335. https://doi.org/10.1002/ams2.426

Sawafuji, R., Cappellini, E., Nagaoka, T., Fotakis, A. K., Jersie-Christensen, R. R., Olsen, J. V., Hirata, K. y Ueda, S. (2017). Proteomic profiling of archaeological human bone. Royal Society open science, 4(6), 161004. https://doi.org/10.1098/rsos.161004

Scheinsohn, V., Leonardt, S., Rizzo, F., Evans, D., Fernández, M., Hammond, H., Miranda P., Zilio, L., Tchilinguirián, P., Maksemchuck S., Kuperszmit N. y Plaza, H. (2022). Prácticas funerarias en el valle del Genoa (Chubut, Argentina) en el Holoceno Tardío final. Un abordaje del sitio Cueva de Plaza a partir de múltiples líneas de evidencias. Intersecciones en Antropología 23(1), 21-35. https://doi.org/10.37176/iea.23.1.2022.655

Schmidt-Schultz, T. H. y Schultz, M. (2004). Bone protects proteins over thousands of years: extraction, analysis, and interpretation of extracellular matrix proteins in archeological skeletal remains. American Journal of Physical Anthropology, 123 (1), 30-39. https://doi.org/10.1002/ajpa.10308

Sidiropoulos, K., Viteri, G., Sevilla, C., Jupe, S., Webber, M., Orlic-Milacic, M., Jassal, B., May, B., Shamovsky, V., Duenas, C., Rothfels, K., Matthews, L., Song, H., Stein, L., Haw, R., D’Eustachio, P., Ping, P., Hermjakob, H. y Fabregat, A. (2017). Reactome enhanced pathway visualization. Bioinformatics, 33(21), 3461-3467. https://doi.org/10.1093/bioinformatics/btx441

Thomas, Paul D., Ebert, D., Muruganujan, A. M., Mushayahama, T., Albou, L.-P. y Mi, H. (2022). PANTHER: Making genome-scale phylogenetics accessible to all. Protein Society 31(1), 8-22. https://doi.org/10.1002/pro.4218

Warinner, C., Rodrigues, J. F. M., Vyas, R., Trachsel, C., Shved, N., Grossmann, J., Radini, A., Hancock, Y., Tito, R., Fiddyment, S., Speller, C., Hendy, J., Charlton, S., Luder, H., Salazar-García, D., Eppler, E., Seiler, R., Hansen, H. y Cappellini, E. (2014). Pathogens and host immunity in the ancient human oral cavity. Nature genetics, 46(4), 336-344. https://doi.org/10.1038/ng.2906

Welker, F., Collins, M. J., Thomas, J. A., Wadsley, M., Brace, S., Cappellini, E., Turvey, S., Reguero, M., Gelfo, J., Kramarz, A., Burger, J., Thomas-Oates, J., Ashford, D., Ashton, P., Rowsell, P., Porter, D., Kessler, B., Fischer, R., Baessmann, C. y MacPhee, R. D. (2015). Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates. Nature, 522(7554), 81-84. https://doi.org/10.1038/nature14249

Welker, F., Ramos-Madrigal, J., Gutenbrunner, P., Mackie, M., Tiwary, S., Rakownikow Jersie-Christensen, R., Chiva, C., Dickinson, M., Kuhlwilm, M., de Manuel, M., Gelabert, P., Martinón-Torres, M., Margvelashvili, A., Arsuaga, J., Carbonell, E., Marques-Bonet, T., Penkman, K., Sabidó, E., Cox, J. y Cappellini, E. (2020). The dental proteome of Homo antecessor. Nature, 580(7802), 235-238. https://doi.org/10.1038/s41586-020-2153-8

Wheater, P. R., Burkitt, H. G. y Daniels, V. G. (1987). Functional Histology. New York: Churchill Livingstone.

Young, M. F. (2003). Bone matrix proteins: more than markers. Calcified Tissue International, 72(1), 2. https://doi.org/10.1007/s00223-002-1017-6

Descargas

Publicado

29.12.2022

Cómo citar

Neme Tauil, R. M., Evans, D., Miranda De Zela, P., Moreno, S., Crespo, F., & Scheinsohn, V. (2022). Arqueoproteómica como complemento de estudios paleopatológicos en restos óseos humanos de la Cueva de Plaza, Chubut, Argentina: alcances y limitaciones. Revista Argentina De Antropología Biológica, 25(1), 062. https://doi.org/10.24215/18536387e062

Número

Sección

Trabajos Originales