Wood density as an integrating variable of wood anatomy: Analysis of branches and stem in four species of Eucalyptus

Authors

  • Silvia Monteoliva Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Antonio José Barotto Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Pamela Alarcón Instituto Nacional de Tecnología Agropecuaria, Argentina
  • Natalia Tesón Instituto Nacional de Tecnología Agropecuaria, Argentina
  • María Elena Fernández Instituto Nacional de Tecnología Agropecuaria, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

Keywords:

cell morphometry, wood density, percentage of tissues, vessels, fibers

Abstract

The aim of this study was to determine the relationship between wood density and xylem anatomy of branches and stem of four commercial Eucalyptus L´Hér. (Myrtaceae) species, considering anatomy as the main determinant of xylem functionality. We worked with samples from branches (n = 30) and stem (n = 82) of four species of adult’s trees: E. grandis, E. camaldulensis, E. viminalis and E. globulus. The wood density and quantitative anatomical features of vessels, fibers and proportion of tissue (fibers, vasicentric tracheids, vessels, rays and parenchyma) in histological sections and macerated were determined in both organ types (stem and branches). The wood density of stem was different among species but it was similar in the branches. According to the relationships found between density and anatomy, using correlations and principal component analysis, trends not always followed similar patterns among branches and stem. The wood density was not a good predictor of the several individual anatomical variables within each organ considered. In the case of branches, the density was revealed as an integrating variable of fraction lumens more than the individual variables of vessels (diameter or number) or the associated wall fractions (biometrics of fibers and occupied area). In contrast, in stem, density integrated fraction lumens (vessels), including morphometry of fibers and tissue percentages. Then, it is possible to find species / genotypes of similar density in this genus but with different composition / anatomical structure.

Downloads

Download data is not yet available.

References

Allen, C.D., A. K. Macalady, H. Chenchouni, D. Bachelet , N. McDowell, M. Vennetier, T. Kitzberger, A. Rigling, D. D. Breshears, E.H. (Ted) Hogg, P. Gonzalez, R. Fensham, Z. Zhang, J. Castro, N. Demidova, J. Lim, G. Allard, S. W. Running, A. Semerci & N. Cobb. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259: 660–684.

Booth, T.H. 2013. Eucalypt plantations and climate change. Forest Ecology and Management 301: 28–34.

Brodersen, C.R. 2013. Visualizing wood anatomy in three dimensions with high-resolution X-ray micro-tomography (μCT )– a review – IAWA Journal 34 (4): 408–424.

Brotel, M.C.G., P.F. Trugilho, S.C. da Silva Rosado & J.R. Moreira da Silva. 2010. Seleção de clones de Eucalyptus para biomassa florestal e qualidade da madeira Selection of Eucalyptus clones for forest biomass and wood quality. Sci. For., Piracicaba 38 (86):237-245.

Chave, J., D. Coomes, S. Jansen, S.L. Lewis, N.G. Swenson & A.E. Zanne. 2009. Towards a worldwide wood economics spectrum. Ecology Letters 12:351–366.

Drew D.M., G. M. Downes, A. P. O’Grady, J. Read & D. Worledge. 2009. High resolution temporal variation in wood properties in irrigated and non-irrigated Eucalyptus globulus. Ann. For. Sci. 66: 406.

Fernandes, A., J. Lousada, J. Morais, J. Xavier, J. Pereira & P. Melo-Pinto .2013.

Measurement of intra-ring wood density by means of imaging VIS/NIR spectroscopy (hyperspectral imaging). Holzforschung 67(1):59-65.

Franklin, G. 1945. Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 155:51–51.

Fujiwara, S, K. Sameshima, K. Kuroda & N. Takamura. 1991. Anatomy and properties of Japanese hardwoods. I. Variation of fibre dimensions and tissue proportions and their relation to basic density. IAWA Bulletin ns 12:419–424.

Hacke, U.G., J.S. Sperry, W.T. Pockman, S.D. Davis & K.A. McCulloh. 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126(4): 457-461.

Jacobsen, A.L, F. W. Ewers, R. B. Pratt, W.A. Paddock III & S. D. Davis. 2005. Do Xylem Fibers Affect Vessel Cavitation Resistance?. Plant Physiology 139: 546–556.

Jacobsen, A. L, L. Agenbag, K. J. Esler, R.B. Pratt, F. W. Ewers & S. D. Davis. 2007. Xylem density, biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the Mediterranean-type climate region of South Africa. Journal of Ecology 95, 171–183.

Lachenbruch, B & K. A. McCulloh. 2014. Traits, properties, and performance: how

woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. New Phytologist 204: 747–764.

Martínez-Cabrera, H.I., C. S. Jones, S. Espino & H. J. Schenk. 2009. Wood anatomy and wood density in shrubs: responses to varying aridity along transcontinental transects. American Journal of Botany 96(8): 1388–1398.

Martínez-Cabrera, H.I., H.J. Schenk, R.S. Cevallos-Ferriz & C.S. Jones. 2011. Integration of vessel traits, wood density, and height in angiosperm shrubs and trees. American Journal of Botany 98: 915–922.

Meinzer, F.C., S. A. James, G. Goldstein & D.R. Woodruff. 2003. Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees. Plant Cell Environ 26:1147–1155.

Novak, K., M. A. Saz Sánchez, K. Čufar, J. Raventós & M. de Luis. 2013. Age, climate and intra-annual density fluctuations in Pinus halepensis in Spain. IAWA Journal 34 (4): 459–474.

Poorter l., I. McDonald, A. Alarcón, E. Fichtler, J.C. Licona, M.Peña-Claros, F. Sterck, Z. Villegas & U. Sass-Klaassen. 2010. The importance of wood traits and hydraulic conductance for the performance and life historystrategies of 42 rainforest tree species. New Phytologist 185: 481–492.

Preston, K.A., W.K. Cornwell & J.L. DeNoyer. 2006. Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytol. 170(4): 807- 818.

Searson, M.J., D. S. Thomas, K. D. Montagu & J.P. Conroy. 2004. Wood density and anatomy of water-limited eucalypts. Tree Physiology 24: 1295–1302.

Thomas, D.S., K. D. Montagu & J. P. Conroy. 2007. Why does phosphorus limitation increase wood density in Eucalyptus grandis seedlings? Tree Physiology 26 (1) : 35-42.

Thomas, D.S., K. D. Montagu & J. P. Conroy. 2007. Temperature effects on wood anatomy, wood density, photosynthesis and biomass partitioning of Eucalyptus grandis seedlings. Tree Physiology 27: 251–260.

Zanne A.E. , M. Westoby, D. S. Falster, D. D. Ackerly, S. R. Loarie, S. E. J. Arnold & D.l A. Coomes. 2010. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany 97(2): 207–215.

Zheng J. & H. I. Martínez-Cabrera. 2013. Wood anatomical correlates with theoretical conductivity and wood density across China: evolutionary evidence of the functional differentiation of axial and radial parenchyma. Annals of Botany 112: 927–935.

Zieminska K., D. W. Butler, S. M. Gleason, I. J. Wright & M. Westoby. 2013. Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB PLANTS www.aobplants.oxfordjournals.org.

Downloads

Published

2017-06-30

How to Cite

Monteoliva, S., Barotto, A. J., Alarcón, P., Tesón, N., & Fernández, M. E. (2017). Wood density as an integrating variable of wood anatomy: Analysis of branches and stem in four species of Eucalyptus. Journal of the Agronomy College, 116(1), 1-11. https://revistas.unlp.edu.ar/revagro/article/view/19429

Most read articles by the same author(s)