Biochemical performance of bean seedlings under water restriction at the beginning of development

Authors

  • Bruno Oliveira Novais Araújo
  • Manoela Andrade Monteiro
  • Angelita Celente Martins
  • Liriana Lacerda Fonseca
  • Adriel Somavilla Uliana
  • Vinícius Diel de Oliveira
  • Tiago Pedó
  • Tiago Zanatta Aumonde

DOI:

https://doi.org/10.24215/16699513e070

Keywords:

Phaseolus vulgaris, water stress, lipid peroxidation, antioxidant enzymes, superoxide dismutase

Abstract

The present work aimed to evaluate the performance of bean cultivars submitted to water deficit in the initial development of plants. The experiment was conducted at the Federal University of Pelotas. The seeds used were from the cultivars BRS Esteio and IPR Tuiuú, both cultivars from the black group. Water restriction was imposed using PEG-6000 as an osmotic potential reducer to perform the germination test. On the tenth day of germination, seedlings were collected for the evaluation of the following tests: levels of proline, hydrogen peroxide, lipid peroxidation and antioxidant enzymes that were evaluated through the specific activity of the enzymes superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). The design used was completely randomized, in the factorial scheme two cultivars for four osmotic potentials. The data were subjected to analysis of variance and the F values ​​when significant were compared using the Tukey test at 5% probability. The results demonstrate that water restriction, according to the osmotic potential, affects CAT, SOD, APX enzymes in a different way. Which can result in plants less adapted to water stress.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ashraf, M. & Foolad, M.R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany: 59: 206-216.

Aumonde, T.Z., Pedó, T., Martinazzo, E.G. & F.A. Villela. 2017. Estresses ambientais e a produção de sementes: Ciência e Aplicação. 1ed. Pelotas-RS: Cópias Santa Cruz 1: 257-275.

Azevedo, R.A., Alas, R.M., Smith, R.J. & P.J. Lea. 1998. Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiologia Plantarum 104: 280-292.

Barbosa, M. R., Silva, M.M.A., Willadino, L., Ulisses, C. & T.R. Camara. 2014. Planta generation and enxymatic detoxification of reactive oxugen species. Ciência Rural 44: 453-460.

Blokhina, O. & K.V. Fagerstedt. 2010a. Oxidativemetabolism, ROS and NO under oxygen deprivation. Plant Physiology and Biochemistry 48: 359 - 373.

Blokhina, O. & K.V. Fagerstedt. 2010b. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. Physiologia Plantarum 138: 447-462.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.

Brasil. 2009. Regras para análise de sementes. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. – Brasília: Mapa/ACS, 399 pp.

Cakmak, I. & W.J. Horst. 1991. Effect of aluminium on lipid peroxidation, superoxido dismutase, catalase, and peroxidases activities in root tips of soybean (Glycine max). Physiologia Plantarum 83: 463-468 pp.

Caverzan, A., Casassola, A. S.O. & Brammer. 2016. Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress. En: ROS generation. Libro. Disponible en: www.intechopen.com/books/abiotic-and-biotic-stress-in-plants-recent-advances-and-future-perspectives/reactive-oxygen-species-and-antioxidant-enzymes-involved-in-plant-tolerance-to-stress. Último acceso: Julio de 2020.

Chaves, M.M., Flexas, J. & C. Pinheiro. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103: 551- 560.

Coêlho, J.D. 2018. Produção de grãos – feijão, milho e soja. Caderno Setorial ETENE. V. 33, 12 pp.

Conab. 2019. Acompanhamento da safra brasileira: grãos, V. 6 – SAFRA 2018/19 – n. 5 - Quinto levantamento fevereiro.

Costa, M.A.T., Tormena, C.A., Lugão, S.M.B., Fidalski, J., Nascimento, W.G.D. & F.M.D. Medeiros. 2012. Resistência do solo à penetração e produção de raízes e de forragem em diferentes níveis de intensificação do pastejo. Revista Brasileira de Ciência do Solo 36: 993 -1004.

Demidchik, V. 2015. Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environmental and Experimental Botany 109: 212-228.

Garray-Arroyo, A., Colmenero-Flores, J.M., Garciarrubio, A. & A. Covarrubias. 2000. Highly hydrophilic proteins in prokariotes and eukariotes are common during conditions of water deficit. Journal of Biological Chemistry 275: 5668-5674.

Giannopolitis, C.N. & S.K. Ries. 1997. Superoxide dismutase. I. Occurrence in higher plants. Plant Physiology 59: 309-314 pp.

Gill, S.S. & N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48: 909-930.

Jaime, P.C., Stopa, S.R., Oliveira, T.P., Vieria, M.L., Szwarcwald, C.L. & D.C. Malta. 2015. Prevalência e distribuição sociodemográfica de marcadores de alimentação saudável, Pesquisa Nacional de Saúde, Brasil 2013. Epidemiologia e Serviço de Saúde 24: 267-276.

Jaleel, C.A., Riadh, K., Gopi, R., Manivannan, P., Iné, J., Al-Juburi, H.J., Chang-Xing, Z., Hong-Bo, S. & R. Panneerselvam. 2009. Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiologiae Plantarum 31 (3): 427 – 436.

Kramer, L.F.M. 2016. Indicadores qualitativos e quantitativos para avaliação da qualidade física de Latossolos do Paraná. PhD. Tesis. Universidade Estadual de Maringá, Maringá. 254 pp.

Martins, A.C., Larré, C.F., Bortolini, F., Borella, J., Eichholz, R., Delias, D. & L. Amarante. 2018. Tolerância ao déficit hídrico: adaptação diferencial entre espécies forrageira. Iheringia, Série Botânica 73 (3): 228-239.

Nakano, Y. & K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach cloroplasts. Plant and Cell Physiology 22: 867-880.

Pereira, J.W.L., Filho, P.A.M., Albuquerque, M.B.; Nogueira, R.J.M.C. & R.C. Santos. 2012. Mudanças bioquímicas em genótipos de amendoim submetidos a déficit hídrico moderado. Revista Ciência Agronômica 43: 766-773.

Reddy, P.S., Jogeswar, G., Rasineni, G.K., Maheswari, M., Reddy, A.R., Varshney, R.K. & P.B.K. Kisho. 2015. Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiology and Biochemistry 94: 104-113.

Rena, A.B. & G.Z. Masciotti. 1976. The effect of dehydration on nitrogen metabolism and growth of bean cultivars (Phaseolus vulgaris L.). Revista Ceres 23: 288-301.

Szabados, l. & A. Savouré. 2010. Proline: a multifunctional amino acid. Trends in Plant Science 15 (2): 89-97.

Taiz, L., Zeiger, E., Moller, I.A. & A. Murphy. 2017. Fisiologia e Desenvolvimento Vegetal - 6ª Ed. Artmed, 888 pp.

Velikova, V., Yordanov, I. & A. Edreva. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Science 151: 59-66.

Verbruggen, N. & C. Hermans. 2008 Proline accumulation in plants: a review. Amino Acids 35: 753-759.

Villela, F.A., Doni Filho, L. & E.L. Siqueira. 1991. Tabela do potencial osmótico em função da concentração de polietilenoglicol 6000 e da temperatura. Pesquisa Agropecuária Brasileira 26 (11/12): 1957-1968.

Yamada, N., Morishita, H., Urano, K., Shiozaki, N., Yamaguchi-Shinozaki, k., Shinozaki, k. & Y. Yoshiba. 2005. Effects of free proline accumulation in petunias under drought stress. Journal of Experimental Botany 56: 1975-1981.

Published

2021-06-20

How to Cite

Oliveira Novais Araújo , B. ., Andrade Monteiro, M. ., Celente Martins, A. ., Lacerda Fonseca, L. ., Somavilla Uliana, A. ., Diel de Oliveira, V. ., Pedó, T. ., & Zanatta Aumonde, T. . (2021). Biochemical performance of bean seedlings under water restriction at the beginning of development. Journal of the Agronomy College, 120(1), 070. https://doi.org/10.24215/16699513e070

Most read articles by the same author(s)