“Ask ChatGPT”: Generative Artificial Intelligences in Digital Capitalism
DOI:
https://doi.org/10.24215/26183188e142Keywords:
Generative Artificial Intelligence, Large Language Models, digital capitalism, technologyAbstract
This article analyzes the structural characteristics of Generative Artificial Intelligences. Economically, they are developed for profit, which conditions their other features: they are sustained by the unpaid appropriation of collective knowledge and generate productivity gains whose appropriation must be discussed. Philosophically, they challenge the notion of what it means to be human by producing effects that were previously exclusive to humans, such as making decisions, acting, or creating narratives. They also appeal to emotions: they imitate and manipulate affections, generate trust by not passing judgement on users, offer unlimited attention, and confirm prior expectations. They present errors and hallucinations, opacity in their processes, and a lack of signals that distinguish whether or not a digital good was produced by humans. The article concludes with a call for a policy to decommodify these technologies.
References
AI model blackmails engineer; threatens to expose his affair in attempt to avoid shutdown. (24 de mayo de 2025). The Economic Times. https://economictimes.indiatimes.com/magazines/panache/ai-model-blackmails-engineer-threatens-to-expose-his-affair-in-attempt-to-avoid-shutdown/articleshow/121376800.cms?from=mdr
Breard, G., Castillo, V. y Schleser, D. (2023). Impacto de la Inteligencia Artificial generativa en el empleo asalariado registrado del sector privado: diagnóstico y respuestas de política [Documento de trabajo]. Subsecretaría de Planificación, Estudios y Estadísticas, Ministerio de Trabajo, Empleo y Seguridad Social.
Brynjolfsson, E., Li, D. y Raymond, L. R. (2023). Generative AI at work. NBER Working Papers, w31161.
Brynjolfsson, E., Li, D. y Raymond, L. (2025). Generative AI at Work. The Quarterly Journal of Economics, 140(2), 889–942. https://doi.org/10.1093/qje/qjae044
Chelli, M., Descamps, J., Lavoué, V., Trojani, C., Azar, M., Deckert, M., Raynier, J.-L., Clowez, G., Boileau, P. y Ruetsch-Chelli, C. (2024). Hallucination rates and reference accuracy of ChatGPT and bard for systematic reviews: Comparative analysis. Journal of Medical Internet Research, 26, e53164. https://doi.org/10.2196/53164
Eloundou, T., Manning, S., Mishkin, P. y Rock, D. (2023). Gpts are gpts: An early look at the labor market impact potential of large language models. arXiv, 2302.06590. https://arxiv.org/abs/2302.06590
Harari, Y. N. (2016). Homo Deus: A brief history of tomorrow. Harper.
Harari, Y. N. (2024). Nexus. Debate.
Lund, A. y Zukerfeld, M. (2020). Corporate Capitalism’s use of openness: Profit for free? Springer Nature. https://doi.org/10.1007/978-3-030-28219-6
Marx, K. (1972). Elementos fundamentales para la crítica de la economía política (Borrador) 1857-1858. Siglo XXI Editores.
Miceli, M., Posada, J. y Yang, T. (2022). Studying up machine learning data: Why talk about bias when we mean power? Proceedings of the ACM on Human-Computer Interaction, 6(GROUP), 1-14. https://doi.org/10.1145/3492853
Noy, S. y Zhang, W. (2023). Experimental evidence on the productivity effects of generative artificial intelligence. Science, 381(6654), 187-192. https://doi.org/10.1126/science.adh2586
Park, P. S., Goldstein, S., O’Gara, A., Chen, M. y Hendrycks, D. (2023). AI deception: A survey of examples, risks, and potential solutions. arXiv, 2308.14752. https://doi.org/10.48550/arXiv.2308.14752
Pawel, G., Janine, B. y David, B. (2023). Generative AI and jobs: A global analysis of potential effects on job quantity and quality. ILO Working Paper, 96. https://doi.org/10.54394/FHEM8239
Peng, S., Kalliamvakou, E., Cihon, P. y Demirer, M. (2023). The impact of AI on developer productivity: Evidence from GitHub Copilot. arXiv, 2302.06590. https://doi.org/10.48550/arXiv.2302.06590
Romano, D. y Gaskins, C. (21 de julio de 2025). The reality of AI hallucinations in 2025. Drainpipe.io. https://drainpipe.io/the-reality-of-ai-hallucinations-in-2025/?utm_source=chatgpt.com
Tubaro, P., Casilli, A. A., Fernández Massi, M. I., Longo, J., Torres Cierpe, J. y Viana Braz, M. (2025). The digital labour of artificial intelligence in Latin America: A comparison of Argentina, Brazil, and Venezuela. Globalizations, 1-16. https://doi.org/10.1080/14747731.2025.2465171
Weber-Wulff, D., Anohina-Naumeca, A., Bjelobaba, S., Foltýnek, T., Guerrero-Dib, J., Popoola, O., Šigut, P. y Waddington, L. (2023). Testing of detection tools for AI-generated text. International Journal for Educational Integrity, 19(1), 1–39. https://doi.org/10.1007/s40979-023-00146-z
Zao-Sanders, M. (9 de abril de 2025). How people are really using Gen AI in 2025. Harvard Business Review. https://hbr.org/2025/04/how-people-are-really-using-gen-ai-in-2025
Zukerfeld, M. (2025). Tendencias del trabajo en relación a las tecnologías digitales: comparación entre trabajadores de software, audiovisuales, educación a distancia, reparto y empleo doméstico. Realidad Económica IADE, 55(375).
Zukerfeld, M., Rabosto, A., Fredes, M. y DeMarco, C. (2023). Encuesta de usos de ChatGPT en Argentina: Resultados preliminares sobre frecuencia de uso, productividad en el trabajo y sustitución de tareas. Hipertextos, 11(20), 075. https://doi.org/10.24215/23143924e075
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mariano Zukerfeld

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors whose texts are published in this Journal surrender their ownership rights in favour of the editor in a non exclusive manner, i.e. the authors can enter into other independent and additional contracts to publish their text, e.g. including it in an institutional repository, thematic or otherwise, publish it in a book, or others, as long as it is overtly stated that the work was first published in this Journal.
The responsibility for each published paper as regards its content relies exclusively on its authors, holding the editors harmless for any legal liabilities.
The texts of the Journal shall be published under the Creative Commons 4.0 BY-NC-SA license. Therefore, the editors are free to:
1) Share, copy and redistribute the material using any means or format.
2) Adapt, remix, transform and create from the material, under the following conditions:
- a) Attribution — credit to this work must be given in an appropriate manner, providing a link to the license and indicating if changes have been made.
- b) Non-Commercial Use — no use may be made of the published material for commercial purposes.
- c) Share Equal — Authors remixing, transforming or creating from the material must distribute their contribution under the same license as the original.






























