Modelización y predicción de series de tiempo financieras utilizando redes neuronales

Authors

  • Gustavo Maradona
  • Hugo Balacco

Keywords:

JEL: C4

Abstract

The purpose of this work is to model and predict Financials Time Series by using neural networks. In order to achieve this aim, a recurrent total neural network with two hidden layers has been chosen; one layer for the linear threshold function and the other for the arctangent function. The series used in this research paper are the MERVAL index (Argentina) and the DOW JONES (USA). These results are based on information obtained over a period that goes from 1995 to 2006. The presentation will deal with the comparison of alternative techniques and the results obtained by other research workers.

Downloads

Metrics

PDF views
1,481
Jan 2012Jul 2012Jan 2013Jul 2013Jan 2014Jul 2014Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202691
|

Published

2011-12-30

How to Cite

Maradona, G., & Balacco, H. (2011). Modelización y predicción de series de tiempo financieras utilizando redes neuronales. Económica, 57, p. 3–24. Retrieved from https://revistas.unlp.edu.ar/Economica/article/view/5361

Issue

Section

Articles