Canalización e integración morfológica en poblaciones humanas modernas de diferentes contextos culturales y orígenes geográficos/Canalization and morphological integration in modern human populations from different cultural

Autores/as

  • Carolina Paschetta
  • Rolando González-José

Resumen

RESUMEN La expresión fenotípica es el resultado de una compleja red de interacciones entre el genotipo y el ambiente. De entre los factores que contribuyen a establecer el fenotipo adulto, los procesos de desarrollo son de particular importancia como determinantes de los patrones de variación en distintos niveles de organización dentro del individuo. En este trabajo, dos resultados del actuar de dichos procesos, la canalización y la integración morfológica son evaluados en diferentes regiones del cráneo ó módulos en seis poblaciones humanas modernas que contrastan en sus estrategias económicas y sus orígenes geográficos. La canalización puede definirse como la resistencia de una población a responder a diferencias ambientales o genéticas mediante un aumento en la variación de sus fenotipos. La integración morfológica puede definirse como el grado de interrelación en la expresión de diferentes caracteres. Los resultados sugieren altos grados de canalización para el neuro y basicráneo y menos canalización en las restantes estructuras, más vinculadas con la masticación. Por otro lado, la integración morfológica es más evidente en la fosa temporal y la articulación temporo-mandibular. En general, los resultados indican que existen efectos diferenciales de la canalización e integración morfológica en los diferentes módulos craneales, y que probablemente estas diferencias respondan a los efectos de variaciones en los estilos de vida.

ABSTRACT The adult phenotype is the result of a complex network of interactions between the genotype and the environment. Among the factors that contribute to establish the adult phenotype, developmental processes are particularly important in determining patterns of variation at different organization levels within the individual. In this work, two products of such developmental processes, canalization and morphological integration, are evaluated at different skull regions or modules in six modern human populations differing in their life-style and geographic origins. Canalization is defined as the resistance of a population to respond to environmental or genetic differences by increasing the variation in their phenotypes. Morphological integration is defined as the interrelationship degree in the expression of different characters. Results indicate that the neurocranium and the base are the most canalized of the studied structures, whereas structures related to mastication tend to show differing levels of canalization. Morphological integration is most evident in the temporal fossa and the temporo mandibular joint. In general, these results indicate that variable levels of canalization and morphological integration can arise as a response to different environmental stimuli like life strategy and/or diet hardness. 

Publicado on-line: 22/08/2012

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Ackermann RR. 1998. A quantitative assessment of variability in the australopithecine, human, chimpanzee, and gorilla face. Ph.D. Thesis. Washington University. St. Louis. USA. http://web.uct.ac.za/depts/age/people/ack1998.pdf

Ackermann RR. 2002. Patterns of covariation in the hominoid craniofacial skeleton: implications for paleoanthropological models. J Hum Evol 42:167-187.

Ackermann RR. 2003. Morphological integration in hominoids: a tool for understanding human evolution. Am J Phys Anthropol Suppl 32:35.

Bastir M, Rosas A. 2005. Hierarchical nature of morphological integration and modularity in the human posterior face. Am J Phys Anthropol 128:26-34.

Beecher RM, Corruccini RS. 1981. Effects of dietary consistency on maxillary arch breadth in macaques. J Dent Res 60:68.

Beecher RM, Corruccini RS, Freeman M. 1983. Craniofacial correlates of dietary consistency in a nonhuman primate. J Craniofac Genet Dev Biol 3:193-202.

Buikstra JE, Ubelaker DH. 1994. Standards for data collection from human skeletal remains. Fayetteville, Arkansas: Arkansas Archeological Survey Research Series No 44.

Ciochon RL, Nisbett RA, Corruccini RS. 1997. Dietary consistency and craniofacial development related to masticatory function in minipigs. J Craniofac Genet Dev Biol 17:96-102.

Corruccini RS. 1999. How anthropology informs the orthodontic diagnosis of malocclusion´s causes. Lewiston: The Edwin Meller Press.

Corruccini RS, Beecher RM. 1982. Occlusal variation related to soft diet in a nonhuman primate. Science 218:74-76.

Corruccini RS, Beecher RM. 1984. Occlusofacial morphological integration lowered in baboons raised on soft diet. J Craniofac Genet Dev Biol 4:135-142.

Corruccini RS, Handler JS. 1980. Temporomandibular joint size decrease in American Blacks: evidence from Barbados. J Dent Res 59:1528.

Corruccini RS, Henderson AM, Kaul SS. 1985. Bite-force variation related to occlusal variation in rural and urban Punjabis (North India). Arch Oral Biol 30:65-69.

Cheverud JM. 1982. Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution 36:499-516.

Cheverud JM. 1995. Morphological integration in the saddle-back tamarin (Saguinus fuscicolis) cranium. Am Nat 145:63-89.

Enlow DH. 1990. Facial growth. Philadelphia: Saunders. Escoufier Y. 1973. Le traitement des variables vectorielles. Biometrics 29:751-760.

Falconer DS, MacKay TFC. 1996. Introduction to quantitative genetics. Harlow: Longman Group Ltd.

González-José R, Bortolini MC, Santos F, Bonatto S. 2008. The peopling of America: Craniofacial shape variation on a continental scale and its interpretation from an interdisciplinary view. Am J Phys Anthropol 137(2):175-187.

González-José R, Ramirez-Rozzi F, Sardi M, MartínezAbadías N, Hernández M, Pucciarelli HM. 2005.

Functional-cranial approach to the influence of economic strategy on skull morphology. Am J Phys Anthropol 128:757-771.

González-José R, Van der Molen S, González-Pérez E, Hernández M. 2004. Patterns of phenotypic covariation and correlation in modern humans as viewed from morphological integration. Am J Phys Anthropol 123(1):69-77.

Goodall CR. 1991. Procrustes methods in the statistical analysis of shape (with discussion and rejoinder). J Roy Stat Soc Ser B 53:285-339.

Gould SJ. 1989. A developmental constraint in Cerion, with comments on the definition and interpretation of constraint in evolution. Evolution 43:516-539.

Hallgrímsson B, Brown JJY, Hall BK. 2005. The study of phenotypic variability: an emerging research agenda for understanding the developmental-genetic architecture underlying phenotypic variation. En: Hallgrímsson B, Hall BK, editores. Variation: a central concept in biology. Nueva York: Academic Press. p 525-551.

Hallgrímsson B, Lieberman DE. 2008. Mouse models and the evolutionary developmental biology of the skull. Integr Comp Biol 48:373-384.

Hallgrímsson B, Lieberman DE, Young NM, Parsons T, Wat S. 2007. Evolution of covariance in the mammalian skull. Novartis Found Symp 284:164-185.

Hallgrímsson B, Willmore K, Hall BK. 2002. Canalization, developmental stability, and morphological integration in primate limbs. Am J Phys Anthropol Suppl 35:131-158.

Houle R, Govindaraju DR, Omholt S. 2010. Phenomics: the next challenge. Nature Rev 11:855-866.

Ingervall B, Bitsanis E. 1987. A pilot study of the effect of masticatory muscle training on facial growth in longface children. Eur J Orthod 9:15-23.

Jernvall J, Jung HS. 2000. Genotype, phenotype, and developmental biology of molar tooth characters. Am J Phys Anthropol 43:171-190.

Klingenberg CP. 2008. Morphological integration and developmental modularity. Annu Rev Ecol Evol Syst 39:115-132.

Larsen C. 1995. Biological changes in human populations with agriculture. Ann Rev Anthropol 24:185-213.

Larsen C. 1997. Bioarchaeology: interpreting behavior from the human skeleton. Cambridge: Cambridge University Press.

Lieberman DE. 2008. Speculations about the selective basis for modern human craniofacial form. Evolutionary Anthropology 17:55-68.

Lieberman DE, Krovitz GE, Yates FW, Devlin M, St Claire M. 2004. Effects of food processing on masticatory strain and craniofacial growth in a retrognathic face. J Hum Evol 46:655-677.

Lieberman DE, Pearson OM, Mowbray KM. 2000. Basicranial influence on overall cranial shape. J Hum Evol 38(2):291-315.

Lynch JM, Walsh B. 1998. Genetics and analysis of quantitative traits. Sunderland: Sinauer Associates.

Marroig G, Cheverud JM. 2001. A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology, and ontogeny during cranial evolution of New World monkeys. Evolution 55:2576-2600.

Marroig G, Cheverud JM. 2005. Size as a line of least evolutionary resistance: diet and adaptive morphological radiation in New World monkeys. Evolution 59:1128-1142.

Martínez-Abadías N, Paschetta CA, Azevedo S, Esparza M, González-José‚ R. 2009. Developmental and genetic constraints on neurocranial globularity: insights from analyses of deformed skulls and quantitative genetics. Evol Biol 36:37-56.

Moss ML. 1997a. The funtional matrix hypothesis revisited. 1. The role of mechanotransduction. Am J Orthod Dentofacial Orthop 19:301-307.Moss ML. 1997b. The funtional matrix hipothesis revisited. 2. The role of an oseosous connected cellular network. Am J Orthod Dentofacial Orthop 112:221-226.

Moss ML. 1997c. The funtional matrix hipothesis revisited. 3. The genomic thesis. Am J Orthod Dentofacial Orthop 112:338-342.

Moss ML. 1997d. The funtional matrix hipothesis revisited. 4. The epigenetic antithesis and the resolving synthesis. Am J Orthod Dentofacial Orthop 112:410-417.

Moss ML, Young RW. 1960. A funcional approach to craniology. Am J Phys Anthropol 18:281-291.

Olson EC, Miller RL. 1958. Morphological integration. Chicago: University of Chicago Press.

Paschetta CA, de Azevedo S, Castillo L, Martínez-Abadías N, Hernández M, Lieberman DE, González-José R. 2010. The influence of masticatory loading on craniofacial morphology: a test case across technological transitions in the Ohio Valley. Am J Phys Anthropol 141:297-314.

Pavlicev M, Cheverud JM, Wagner GP. 2009. Measuring morphological integration using eigenvalue variance. Evol Biol 36:157-170.

Pucciarelli HM, Dressino V, Niveiro M. 1990. Changes in skull components of the squirrel monkey evoked by growth and nutrition. An experimental study. Am J Phys Anthropol 81:535-543.

Richardson MK, Chipman AD. 2003. Developmental constraints in a comparative framework: test case using variations in phalanx number during amniote evolution. J Exp Zool B Mol Dev Evol 296:8-22.

Rohlf FJ. 2003. TPSSmallF. 1.2 ed. Stony Brook, NY: Department of Ecology and Evolution, State University of New York.

Rohlf FJ. 2004. TPSDig. 1.4 ed. Stony Brook, NY: Department of Ecology and Evolution, State University of New York.

Rohlf FJ. 2007. TPSRelw. 1.45 ed. Stony Brook, NY: Department of Ecology and Evolution, State University of New York.

Rohlf FJ, Slice DE. 1990. Extensions of Procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40-59.

Rutherford SL. 2000. From genotype to phenotype: buffering mechanisms and the storage of genetic information. BioEssays 22:1095-1105.

Salazar-Ciudad I. 2007. On the origins of morphological variation, canalization, robustness, and evolvability. Integr Comp Biol 47(3):390-400.

Salazar-Ciudad I, Newman SA, Sole RV. 2001a. Phenotypic and dynamical transitions in model genetic networks I. Emergence of patterns and genotype-phenotype relations. Evol Dev 3:84-94.

Salazar-Ciudad I, Sole RV, Newman SA. 2001b. Phenotypic and dynamical transitions in model genetic networks II. Application to the evolution of segmentation mechanisms. Evol Dev 3:95-103.

Schluter D. 1996. Adaptive radiation along genetic lines of least resistance. Evolution 50:1766-1774.

Schwenk K. 1995. A utilitarian approach to evolutionary constraint. Zoology 98:251-262.

Sholtis S, Weiss KM. 2005. Genoypes, phenotypes and variation. En: Hallgrímsson B, Hall BK, editores. Variation: a central concept in biology. Nueva York: Academic Press. p 499-523.

Steppan SJ, Phillips PC, Houle D. 2002. Comparative quantitative genetics: evolution of the G matrix. Trends Ecol Evol 17:320-327.

Waddington CH. 1942. Canalization of development and the inheritance of acquired characters. Nature 150:563-565.

Waddington CH. 1957. The strategy of the genes. London: George Allen and Unwin.

Wagner GP. 1990. A comparative study of morphological integration in Apis meliffera (Insecta, Hymenoptera). Z Zool Syst Evol-Forsch 28:48-61.

Weiss K, Fullerton SM. 2000. Phenogenetic drift and the evolution of genotype-phenotype relations. Theor Popul Biol 57:187-195.

Willmore KE, Leamy L, Hallgrimsson B. 2006. Effects of developmental and functional interactions on mouse cranial variability through late ontogeny. Evol Dev 8:550-567.

Willmore K, Young N, Richtsmeier JT. 2007. Phenotypic variability: its components, measurement and underlying developmental processes. Evol Biol 34:99-120.

Zakharaov VM. 1992. Population phenotgenetics: analysis of developmental stability in natural populations. Acta Zoologica Fennica 191:7-30.

Descargas

Publicado

22.08.2012

Cómo citar

Paschetta, C., & González-José, R. (2012). Canalización e integración morfológica en poblaciones humanas modernas de diferentes contextos culturales y orígenes geográficos/Canalization and morphological integration in modern human populations from different cultural. Revista Argentina De Antropología Biológica, 14(1), 101–112. Recuperado a partir de https://revistas.unlp.edu.ar/raab/article/view/560

Número

Sección

Trabajos Originales

Artículos más leídos del mismo autor/a