Gas exchange and antioxidant activity of Prunus rootstocks spp. submitted to drought and waterlogging
Keywords:
rootstock, hidric deficit, flooding, gas exchange, antioxidant enzymesAbstract
The aim of this paper was to evaluate the gas exchange and antioxidant activity of Prunus spp. rootstocks submitted to drought and waterlogging. One year old plants of P. persica (L.) Batsch cv. Flordaguard and Capdeboscq and P. cerasifera Erhr cv. Mirabolano 29-C were submitted to three hidric conditions: control
treatment (daily irrigation), waterlogging of the root system and drough (without irrigation) for four to eight days, and then put under stress recovering conditions, for three days. The net photosynthetic rate (A), stomatal conductance (gs), enzymatic antioxidant system activity (SOD, CAT e APX), the content of hydrogen peroxide and lipid peroxidation were evaluated. During the stress period there was a reduction of the A and gs in all plants of the three cultivars evaluated in relationship to the control plants. However, in the third day of recovery the A and gs patterns returned to values close to control plants for Flordaguard under drough and for Mirabolano 29-C under waterlogging. The activity of the antioxidant enzimes, the hydrogen peroxide content and the lipid peroxidation did not vary in an expressive way in both peach cultivars under hydric deficit. However, under waterlogging it was observed an increase in CAT and APX activity and lipid peroxidation. The cv. Mirabolano 29-C, in both stress conditions activated the enzymatic antioxidant system, which was followed by an increased of H2O2 production and a higher lipid peroxidation, suggesting that this cultivar possesses an antioxidant defense mechanism that expresses itself more intensely and rapidly in both stress conditions. Based in the results we conclude that Mirabolano 29-C presents a higher tolerance to waterlogging, but is more sensibility to drough in relation to the peach cultivars evaluated in this study.
Downloads
References
Almeida, A.C. & J.V. Soares. 2003. Comparação entre uso de água em plantações de Eucalyptus grandis e floresta ombrófila densa (Mata Atlântica) na costa leste do Brasil. Revista Árvore 27, pp. 159-170.
Alonso, A., C.S. Queiroz & A.C. Magalhães. 1997. Chilling stress leads to increased cell membrane rigidity in roots of coffee (Coffea arabica L.) seedlings. Biochimica et Biophysica Acta: BBA. Biomenbranes 1323 (1), pp. 75-84.
Alves, J.D., I. Zanandrea, S. Deuner, P.F.P. Goulart, K.R.D. Souza & M.S. Santos. 2013. Antioxidative responses and morpho-anatomical adaptations to waterlogging in Sesbania virgata. Trees 27, pp. 717- 728.
Amador, M.L., S. Sancho, B. Bielsa, J. Gomes- Aparisi & M.J. Rubio-Cubetas. 2012. Physiological and biochemical parameters controlling waterlogging stress tolerance in Prunus before and after drainage. Physiologia Plantarum, 144, pp. 357–368.
Amako, K., G. Chen & K. Asada. 1994. Separate assay specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant and Cell Physiology, 35, pp. 497-504.
Apel, K. & H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, Oxford, 55, pp. 373–399.
Arbona, V., Z. Hossain, M.F.L. Climent & A.G. Cadenas. 2009. Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiologia Plantarum 132, pp. 452- 466.
Asada, K. 1999. The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology 50, pp. 601-639.
Atkinson, C.J., R.S. Harrison-Murray & J.M. Taylor. 2008. Rapid flood-induced stomatal closure accompanies xylem sap transportation of root-derived acetaldehyde and ethanol in Forsythia. Environmental and Experimental Botany 64 (3), pp. 196-205.
Bailey-Serres, J. & L.A.C.J. Voesenek. 2008. Flooding stress: acclimations and genetic diversity. Annual Review of Plant Biology 59, pp. 313–339.
Biemelt, S., U. Keetman & G. Albrecht. 1998. Reaeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings. Plant Physiology 116 (2), pp. 651-658.
Blokhina, O., E. Virolainen & K.V. Fagerstedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91, pp. 179-194.
Boamfa, E.I., A.H. Eres, P.C. Ram, M.B. Jackson, J. Reuss & J.M. Harren. 2005. Kinetics of ethanol and acetaldehyde release suggest a role for acetaldehyde production in tolerance of rice seedlings to microaerobic conditions. Annals of Botany 96 (4), pp. 727-736.
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein biding. Analytical Biochemistry 72 (1/2), pp. 248-254.
Brunini, O. & M. Cardoso. 1998. Efeito do déficit hídrico no solo sobre o comportamento estomático e potencial da água em mudas de seringueira. Pesquisa Agropecuária Brasileira, 33 (7), pp.1053-1060.
Buege, J.A. & S.D. Aust. 1978. Microsomal lipid peroxidation. Methods in Enzimology 52, pp. 302-310. Chaves, M.M. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103, pp. 551-560.
Cunha, N.G. & R.J.C. Silveira. 1996. Estudo dos solos do município de Pelotas/ - Pelotas : EMBRAPA/CPACT, Ed. UFPel, 1996. 50 p. : il.(Documentos CPACT;12/96).
Delias, D.S. 2013. Características biométricas, trocas gasosas e atividade do sistema antioxidante de plantas de Eucalipto durante o crescimento inicial. Dissertação de Mestrado. Universidade Federal de Pelotas, Pelotas, RS, 73 pp.
Deuner, S., J.D. Alves, I. Zanandrea, A.A. Lima, P.F.P. Goulart, N.M. Silveira, P.C. Henrique & A.C. Mesquita. 2011. Stomatal behavior and components of the antioxidative system in coffe plants under water stress. Scientia Agricola 55 (1), pp.77-85.
Dichio, B., C. Xiloyannis, G. Celano, & L. Vicinanza. 2004. Performance of new selections of Prunus rootstocks, resistant to root knot nematodes, in waterlogging conditions. Acta Horticulturae, 658, pp. 403-406.
Diniz, A.C.B., L.V. Astarita & E.R. Santarém. 2007. Alteração dos metabólitos secundários em plantas de Hypericum perforatum L. (Hypericaceae) submetidas à secagem e ao congelamento Acta Botanica Brasilica, 21(2): 443-450.
Drew, M.C. 1997.Oxigen deficiency and root metabolism: injury and acclimatation under hypoxia and anoxia. Annual Review of Plant Physiology and Plant Molecular Biology 48, p. 223-250.
Ennahli, S. & H.J. Earl. 2005. Physiological Limitations to Photosynthetic Carbon Assimilation in Cotton under Water Stress. Crop Science 45, pp. 2374-2382.
Fachinello, J.C., C.S. Tibola, M. Vicenzi, E. Parisotto, L. Picolotto, J. Flexas & H. Medrano. 2002. Drought‑inhibition of photosynthesis in C3 plants: stomatal and non‑stomatal limitations revisited. Annals of Botany 89, pp.183-189.
Flexas, J. & H. Medrano. 2002. Drought inhibition of photosynthesis in C3 plants: stomatal and non stomatal limitations revisited. Annals of Botany, 89, pp.183-189.
Giannopolitis, C.N. & S.K. Ries. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology 59 (2), pp. 309-314.
Gill, S.S. & N. Tuteja 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, pp. 909-930.
Havir, E.A. & N.A. Mchale. 1987. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology 84 (2), pp. 450-455.
Hinckley, T.M., H. Richter & P.J. Shulte. 1991. Water relations. In: Physiology of Trees. A.S. Raghacendra, Wiley: New York. pp. 137-162.
Hossain, Z., M. L´Opez-Climent, V. Arbona, R. P´Erez-Clement & A. G´Omez-Cadenas. 2009. Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage. Journal of Plant Physiology 166, pp. 1391–1404.
Instituto Brasileiro De Geografia E Estatística (IBGE). 2013. Disponível em www.ibge.gov.br/estadosat/temas.php sigla=rs&tema=lavourapermanente2009. Último acesso: 10 de dezembro de 2013.
Laloi, C., M. Stachowik, E. Pers-Kamczyc, E. Warzych, I. Murgia & K. Apel. 2007. Cross-talk between singlet oxygen- and hydrogen peroxidedependent signaling of stress responses in Arabidopsis thaliana. Proceeding of the National Academy of Science. U.S.A. 104, pp. 672–677.
Liao, C.T. & C.H. Lin. 1995. Effect of flood stress on morphology and anaerobic metabolism of Momordia charantia. Environmental and Experimental Botany 35 (1), pp. 105-113.
Maia, J.M., S.L.F. Sergio Luiz Ferreira-Silva, E.L. Voigt, C.E.C. Macedo, L.F.A. Ponte & J.A.G. Silveira. 2012. Atividade de enzimas antioxidantes e inibição do crescimento radicular de feijão caupi sob diferentes níveis de salinidade. Acta Botanica Brasilica 26(2): 342-349.
Marenco, R.A. & N.F. Lopes. 2007. Fisiologia vegetal: fotossíntese, respiração, relações hídricas e nutrição mineral. 2 ed. Editora UFV, Viçosa, MG. 469 pp.
Martinazzo, E.G., A.T. Perboni, P.V. Oliveira, V.J. Bianchi & M.A. Bacarin. 2013. Atividade fotossintética em plantas de ameixeira submetidas ao déficit hídrico e ao alagamento. Ciência Rural 43 (1), pp. 35-41.
Masia, A., B. Marangoni & S. Sansavini. 1999. Il deperimento dei peschi da asfissia radicale: basi fisiologiche Ed efetti metabolici. Frutticoltura 9, pp. 71-75.
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7 (9), pp. 405-410.
Nakano, Y. & K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbato-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22 (5), pp. 867-880.
Neill, S., R. Desikan & J. Hancock. 2002. Hydrogen peroxide signaling. Current Opinion in Plant Biology 5, pp. 388-395.
Pistelli, L., C. Lacona, D. Miano, M. Cirilli, M.C. Colao, A. Mensuali-Sodi & R. Muleo. 2012. Novel Prunus rootstock somaclonal variants with divergent ability to tolerate waterlogging. Tree Physiology, 32, pp. 355-368.
Polle, A. 2004. Dissecting the superoxide dismutaseascorbate peroxidase- glutathione pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiology, 126, pp. 445-462.
Rodrigues, H.J.B., R.F. Costa, J.B.M. Ribeiro, J.D.C. S. Filho, M.L.P. Ruivo & J.A. Júnior. 2011. Variabilidade sazonal da condutância estomática em um ecossistema de manguezal amazônico e suas relações com variáveis meteorológicas. Revista Brasileira de Meteorologia 26 (2), pp. 189 - 196. Shmitz, J.D., V.J. Bianchi, M.S. Pasa, A.L.K. Souza & J.C. Fachinello. 2012. Vigor e produtividade do pessegueiro ‘Chimarrita’ sobre diferentes portaenxertos. Revista Brasileira de Agrociência 18 (1-4), pp.1-10.
Singh, A.K., M. Bhattacharyya-Pakrasi & H.B. Pakrasi. 2008. Identification of an atypical membrane protein involved in the formation of protein disulfide bonds in oxygenic photosynthetic organisms. The Journal of Biological Chemistry, 283, pp.15762-15770.
Smirnoff, N. 2000. Ascorbic acid: metabolism and functions of a multi-facetted molecule. Current Opinion in Plant Biology 3: 229-235.
Sofo, A., A.C. Tuzio, B. Dichio & C. Xiloyannis. 2005. Influence of water deficit and rewatering on the components of the ascorbate–glutathione cycle in four interspecific Prunus hybrids. Plant Science 169, pp. 403–412.
Velikova, V., I. Yordanov & A. Edreva. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science 151 (1), pp. 59-66.
Voesenek, L.A.C.J., T.D. Colmer, R. Pierik, F.F. Millenaar & A.J.M. Peeters. 2006. How plants cope with complete submergence. New Phytologist 170 (2), pp. 213-226.
Vranová, E., D. Inzé & F.V. Breusegem. 2002. Signal transduction during oxidative stress. Journal of Experimental Botany 53 (372), pp. 1227-1236.
Xiloyannis, C., B. Dichio, A.C. Tuzio, M. Kleinhentz, G. Salesses, J.G. Aparisi, M.J.R. Cabetas & D. Esmenjaud. 2007. Characterization and Selection of Prunus Rootstocks Resistant to Abiotic Stresses: Waterlogging, Drought and Iron Chlorosis. Acta Horticulturae 732, pp. 247-251.
Zanandrea, I., J.D. Alves, S. Deuner, P.F.P. Goulart, P.C. Henrique & N.M. Silveira. 2010. Tolerance of Sesbania virgata plants to flooding. Australian Journal of Botany, 57, pp. 661-669.
Zhang, F. & M.B. Kirkham. 1996. Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytologist, 132, pp. 361–373.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Aline A. Messchmidt, Valmor João Bianchi, Ilisandra Zanandrea, Emanuela Garbin Martinazzo, Elizete Beatriz Radmann, Marcos Antonio Bacarin

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
A partir de 2019 (Vol. 118 número 2) los artículos se publicarán en la revista bajo una licencia Creative Commons Atribución- NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.
Previo a esta fecha los artículos se publicaron en la revista bajo una licencia Creative Commons Atribución (CC BY)
En ambos casos, la aceptación de los originales por parte de la revista implica la cesión no exclusiva de los derechos patrimoniales de los/as autores/as en favor del editor, quien permite la reutilización, luego de su edición (posprint), bajo la licencia que corresponda según la edición.
Tal cesión supone, por un lado, que luego de su edición (posprint) en Revista de la Facultad de Agronomía las/os autoras/es pueden publicar su trabajo en cualquier idioma, medio y formato (en tales casos, se solicita que se consigne que el material fue publicado originalmente en esta revista); por otro, la autorización de los/as autores/as para que el trabajo sea cosechado por SEDICI, el repositorio institucional de la Universidad Nacional de La Plata, y sea difundido en las bases de datos que el equipo editorial considere adecuadas para incrementar la visibilidad de la publicación y de sus autores/as.
Asimismo, la revista incentiva a las/os autoras/es para que luego de su publicación en Revista de la Facultad de Agronomía depositen sus producciones en otros repositorios institucionales y temáticos, bajo el principio de que ofrecer a la sociedad la producción científica y académica sin restricciones contribuye a un mayor intercambio del conocimiento global.






















