Mass transfer, volumetric expansion, and inactivation of antinutritional factors during soybean soaking

Authors

DOI:

https://doi.org/10.24215/30089336e004

Keywords:

soybean, soaking, mathematical modelling, inactivation, Trypsin

Abstract

Soaking is an essential step in the preparation of soybeans prior to consumption. The objectives of this study were to investigate the kinetics of soybean soaking and to evaluate the effect of temperature on trypsin inhibitors. The experiments involved soaking soybeans in a thermostatic bath at different temperatures, ranging from 20 to 80°C, and taking samples between 0 and 300 minutes. For mathematical modeling, a non-steady-state mass balance was proposed, considering a variable diffusion coefficient and volumetric expansion through a correlation between radius and moisture content. The inactivation of antinutritional factors was determined using an enzymatic method. The results showed a significant increase in the volume of the grains (approximately 2.5 times) and a satisfactory fitting of the model to the experimental data. Most treatments reached moisture equilibrium after 200 minutes, except at 20°C. Regarding inhibitors, only the treatment at 80°C showed a significant reduction. The treatment at 40°C for 200 minutes was selected as the most appropriate. The results obtained can be valuable information for the design and optimization of soaking processes.

Downloads

References

Andrade, J. C., Mandarino, J. M. G., Kuruzawa, L. E. y Ida, E. I. (2016). The effect of thermal treatment of whole soybean flour on the conversion of isoflavones and inactivation of trypsin inhibitors. Food Chemistry, 194, 1095-1101. https://doi.org/10.1016/j.foodchem.2015.08.115

Bello, M., Tolaba, M. P., Aguerre, R. J. y Suarez, C. (2010). Modeling water uptake in a cereal grain during soaking. Journal of Food Engineering, 97, 95-100. https://doi.org/10.1016/j.jfoodeng.2009.09.020

Chau, K.V. y Gaffney, J. J. (1990). A finite-difference model for heat and mass transfer in products with internal heat generation and transpiration. Journal of Food Science, 55(2), 484-487. https://doi.org/10.1111/j.1365-2621.1990.tb06792.x

Costa, R., Fusco, F. y Gândara, J. F. M. (2018). Mass transfer dynamics in soaking of chickpea. Journal of Food Engineering, 227, 42-50. https://doi.org/10.1016/j.jfoodeng.2018.02.004

De Lima, F. S., Kurozawa, E. y Ida, E. I. (2014). The effects of soybean soaking on grain properties and isoflavones loss. LWT - Food Science and Technology, 59, 1274-1282. https://doi.org/10.1016/j.lwt.2014.04.032

Deshpande, S. D., Bal, S. y Ojha, T. P. (1994). A study on diffusion of water by the soybean grain during cold water soaking. Journal of Food Engineering, 23, 121-127. https://doi.org/10.1016/0260-8774(94)90127-9

González, R. y Carrillo, D. (1987). Nutrición humana. Manual de prácticas. Editorial Pueblo y Educación.

Hsu, K. H. (1983). A diffusion model with concentration-dependent diffusion coefficient for describing water movement in legumes during soaking. Journal of Food Science, 48, 618-622. https://doi.org/10.1111/j.1365-2621.1983.tb10803.x

Hu, Z., Yang, Y., Lu, L., Chen, Y., Zhu, Z. y Huang, J. (2021). Kinetics of water absorption expansion of rice during soaking at different temperatures and correlation analysis upon the influential factors. Food Chemistry, 346, 128912. https://doi.org/10.1016/j.foodchem.2020.128912

Kaptso, K. G., Njintang, Y. N., Komnek, A. E., Hounhouigan, J., Scher, J., y Mbofung, C. M. F. (2008). Physical properties and rehydration kinetics of two varieties of cowpea (Vigna unguiculata) and bambara groundnuts (Voandzeia subterranean) seeds. Journal of Food Engineering, 86, 91-99. https://doi.org/10.1016/j.jfoodeng.2007.09.014

Kashaninejad, M., Maghsoudlou, Y., Rafiee, S. y Khomeiri, M. (2007). Study of hydration kinetics and density changes of rice (Tarom Mahali) during hydrothermal processing. Journal of Food Engineering, 79, 1383-1390. https://doi.org/10.1016/j.jfoodeng.2006.04.019

Khazaei, J. y Mohammadi, N. (2009). Effect of temperature on hydration kinetics of sesame seeds (Sesamum indicum L.). Journal of Food Engineering, 91, 542-552. https://doi.org/10.1016/j.jfoodeng.2008.10.010

Krokida, M.K. y Marinos-Kouris, D. (2003). Rehydration kinetics of dehydrated products. Journal of Food Engineering, 57, 1-7. https://doi.org/10.1016/S0260-8774(02)00214-5

Kudelka, W., Kowalska, M. y Popis, M. (2021). Quality of soybean products in terms of essential amino acids composition. Molecules, 26, 5071. https://doi.org/10.3390/molecules26165071

Manassero, C. A., Vaudagna, S. R., Sancho, A. M., Añon, M. C. y Speroni, F. (2016). Combined high hydrostatic pressure and thermal treatments fully inactivate trypsin inhibitors and lipoxygenase and improve protein solubility and physical stability of calcium-added soymilk. Innovative Food Science and Emerging Technologies, 32, 86-95. https://doi.org/10.1016/j.ifset.2016.04.005

Nicolin, D. J., Jorge, R. M. M. y Jorge, L. M. M. (2015). Moving boundary modeling of conventional and transgenic soybean hydration: Moisture profile and moving front experimental validation. International Journal of Heat and Mass Transfer, 90, 568-577. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.014

Official Methods of Analysis of AOAC international. (15ª ed.). (1990). Association of Official Agricultural Chemists.

Pabis, S., Jayas, D. S. y Cenkowski, S. (1998). Grain Drying. Theory and Practice. John Wiley & Sons, Inc.

Prachayawarakorn, S., Prachayawasin, P. y Soponronnarit, S. (2006). Heating process of soybean using hot-air and superheated-steam fluidized-bed dryers. LWT- Food Science and Technology, 39, 770-778. https://doi.org/10.1016/j.lwt.2005.05.013

Rahman, N. y Kumar, S. (2006). Evaluation of convective heat transfer coefficient during drying of shrinking bodies. Energy Conversion and Management, 47, 2591-2601. https://doi.org/10.1016/j.enconman.2005.10.025

Ruiz-López, I. I., Ruiz Espinoza, H., Arellanes Lozada, P., Bárcenas-Pozos, M. E. y García-Alvarado, M. A. (2012). Analytical model for variable moisture diffusivity estimation and drying simulation of shrinkable food products. Journal of Food Engineering, 108 (3), 427-435. https://doi.org/10.1016/j.jfoodeng.2011.08.025

Shafaei, S. M., Masoumi, A. A. y Roshan, H. (2016). Analysis of water absorption of bean and chickpea during soaking using Peleg model. Journal of the Saudi Society of Agricultural Sciences, 15, 135-144. https://doi.org/10.1016/j.jssas.2014.08.003

Sobral, P. A. y Wagner, J. R. (2009). Relación entre la composición y la actividad antitríptica de sueros de soja y tofu y comportamiento térmico de sus proteínas aisladas. Información Tecnológica, 20(5), 65-73. https://doi.org/10.1612/inf.tecnol.4115it.08

Thakur, A., Sharma, V. y Thakur, A. (2019). An overview of anti-nutritional factor in food. International Journal of Chemical Studies, 7(1), 2472-2479.

Torrez Irigoyen, R. M. (2013). Diseño de un proceso térmico de fluidización para la producción de soja crocante. [Tesis Doctoral, Universidad Nacional de La Plata]. https://doi.org/10.35537/10915/26978

Torrez Irigoyen, R. M. y Giner, S. A. (2011). Volume and density of whole soybean products during hot-air thermal treatment in fluidised bed. Journal of Food Engineering, 102, 224 - 232. https://doi.org/10.1016/j.jfoodeng.2010.08.023

Torrez Irigoyen, R. M. y Giner, S. A. (2011). Fluidisation velocities during processing of whole soybean snack. Journal of Food Engineering, 107, 90-98. https://doi.org/10.1016/j.jfoodeng.2011.05.040

Torrez Irigoyen, R. M. y Giner, S. A. (2014). Drying-toasting kinetics of presoaked soybean in fluided bed. Experimental study and mathematical modelling with analytical solutions. Journal of Food Engineering, 128, 31-39. https://doi.org/10.1016/j.jfoodeng.2013.12.009

Torrez Irigoyen, R. M., Goñi, S. M. y Giner, S. A. (2014). Drying-toasting kinetics of presoaked soybean. A mathematical model considering variable diffusivity, shrinkage and coupled heat transfer. Journal of Food Engineering, 142, 70-79. https://doi.org/10.1016/j.jfoodeng.2014.06.002

Vagadia, B. H., Vanga, S. K. y Raghavan, V. (2017). Inactivation methods of soybean trypsin inhibitor - A review. Trends in Food Science & Technology, 64, 115-125. https://doi.org/10.1016/j.tifs.2017.02.003

Vega-Gálvez, A., Notte-Cuello, E., Lemus-Mondaca, R., Zura, L. y Miranda, M. (2009). Mathematical modelling of mass transfer during rehydration process of Aloe vera (Aloe barbadensis Miller). Food and Bioproducts Processing, 87, 254-260. https://doi.org/10.1016/j.fbp.2008.10.004

Published

2025-02-21

Issue

Section

Scientific Articles