Convergencia en las proporciones craneanas entre primates del nuevo y el viejo mundo: un análisis craneofuncional / Convergence in cranial proportions in New and Old World primates: a craniofunctional analysis
Resumen
RESUMEN Los humanos modernos han sido caracterizados por una morfología craneana extremadamente lobulada, considerada como una respuesta al aumento significativo en el tamaño del cerebro, que los diferencia de manera marcada del resto de los Primates. Otras especies, como algunos clados de platirrinos, cambiaron independientemente a lo largo de su historia evolutiva y alcanzaron valores elevados de tamaño relativo del cerebro. Este aumento del tamaño del cerebro ofrece una oportunidad para estudiar a escala macroevolutiva en qué medida existió una convergencia en la evolución de la morfología craneana externa de los Primates y qué cambios son particulares del linaje humano. En este trabajo estudiamos los cambios globales en la morfología craneofacial de varias especies de Primates de los infraórdenes Lemuriformes, Platyrrhini y Catarrhini y su relación con los cambios en el tamaño del cerebro empleando técnicas morfométricas, filogenéticas y comparativas. Un análisis de componentes principales mostró que existe una superposición en la distribución en el espacio de forma de Homo sapiens principalmente con los géneros Ateles, Saimiri y Cebus de Platyrrhini. Los análisis comparativos mostraron la falta de estructura filogenética en el eje de mayor variación morfométrica y su asociación con los cambios en el tamaño relativo del cerebro. Esto sugiere la existencia de convergencia evolutiva en la morfología externa del cráneo y señala al cambio relativo en el tamaño del cerebro como un factor intrínseco importante para comprender la variación morfológica en todo el orden Primates.
PALABRAS CLAVE Platirrinos; Catarrinos; morfometría craneofuncional; método comparativo
ABSTRACT Modern humans have been characterized by extremely lobulated cranial morphology, considered a response to the significant increase in brain size, which markedly differs from the rest of the Primates. Other Primate species, such as some platyrrhine clades, evolved independently along their evolutionary history to reach high values of relative brain size. The increase in relative brain size in these Primate clades offers an opportunity to study, at a macroevolutionary scale, to what extent there was a convergence in the evolution of external cranial morphology in Primates and what changes are specific to the human species. We study global changes in craniofacial morphology in several species of Lemuriformes, Platyrrhini and Catarrhini infraorders of Primates, and their relationship with changes in brain size, using morphometric, phylogenetic and comparative techniques. A principal component analysis showed that there is an overlap in the distribution on the shape space of Homo sapiens mainly with Ateles, Saimiri and Cebus Platyrrhini genera. The comparative analyses showed the lack of phylogenetic structure in the axis of greatest morphometric variation, and its association with the changes in relative brain size. This suggests the existence of evolutionary convergence in the external morphology of the skull and points to the change in the relative size of the brain as an intrinsic factor important for understanding morphological change in the Primate order.
KEY WORDS Platyrrhines; Catarrhines; craniofunctional morphometry; comparative method
doi: 10.17139/raab.2014.0016.02.03
Descargas
Métricas
Citas
Aiello L, Dean C. 2002. An introduction to human evolutionary anatomy. Londres: Elsevier Academic Press.
Barbeito-Andrés J, Ventrice F, Anzelmo M, Pucciarelli HM, Sardi ML. 2013. Estudio transversal sobre la covariación ontogénica entre la base y la bóveda craneana humana. En: Avena S, Lois MV, compiladores. Libro de resúmenes. Undécimas Jornadas Nacionales de Antropología Biológica. Buenos Aires. p 93.
Bastir M, Rosas A. 2004. Comparative ontogeny in humans and chimpanzees: similarities, differences and paradoxes in postnatal growth and development of the skull. Ann Anat 186:503-509. doi:10.1016/S0940-9602(04)80096-7
Bastir M, Rosas A, O’Higgins P. 2006. Craniofacial levels and morphological maturation of the human skull. J Anat 209:637-654. doi:10.1111/j.1469-7580.2006.00644.x
Berge C, Penin X. 2004. Ontogenetic allometry, heterochrony, and interspecific differences in the skull of African apes, using tridimensional Procrustes analysis. Am J Phys Anthropol 124:124-138. doi:10.1002/ajpa.10333
Bookstein FL. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge: Cambridge University Press.
Bookstein FL, Gunz P, Miteroecker P, Prossinger H, Schaefer K, Seidler H. 2003. Cranial integration in Homo: singular warps analysis of the midsagittal plane in ontogeny and evolution. J Hum Evol 44:167-187. doi:10.1016/S0047-2484(02)00201-4
Bruner E, Ripani M. 2008. A quantitative and descriptive approach to morphological variation of the endocranial base in modern humans. Am J Phys Anthropol 137:31-40. doi:10.1002/ajpa.20837
Chernoff B, Magwene PM. 1999. Morphological integration: forty years later. En: Olson EC, Miller RL, editores. Morphological integration. Chicago: The University of Chicago. p 319-353.
Cobb SN, O’Higgins P. 2004. Hominins do not share a common postnatal facial ontogenetic shape trajectory. J Exper Zool (Mol Dev Evol) 302B:302-321. doi:10.1002/jez.b.21005
Coqueugniot H, Hublin JJ. 2012. Age-related changes of digital endocranial volume during human ontogeny: results from an osteological reference collection. Am J Phys Anthropol 147:312-318. doi:10.1002/ajpa.21655
Coqueugniot H, Hublin J-J, Veillon F, Houët J-J, Jacob T. 2004. Early brain growth in Homo erectus and implications for cognitive ability. Nature 431:299-302. doi:10.1038/nature02852
Dean MC, Wood BA. 1981. Developing pongid dentition and its use for ageing individual crania in comparative cross-sectional growth studies. Folia Primatol 36:111-127. doi:10.1159/000156011
Dean MC, Wood BA. 1984. Phylogeny, neoteny and growth of the cranial base in hominoids. Folia Primatol 43:157-180. doi:10.1159/000156177
DeSilva J, Lesnik J. 2006. Chimpanzee neonatal brain size: implications for brain growth in Homo erectus. J Hum Evol 51:207-212. doi:10.1016/j.jhevol.2006.05.006
Dryden IL, Mardia KV. 1998. Statistical shape analysis. London: John Wiley.
Durrleman S, Pennec X, Trouvé A, Ayache N, Braga J. 2012. Comparison of the endocranial ontogenies between chimpanzees and bonobos via temporal and spatiotemporal registration. J Hum Evol 62:74-88. doi:10.1016/j.jhevol.2011.10.004
Goodall CR. 1991. Procrustes methods and the statistical analysis of shape. J Roy Statist Soc B 53:285-340.
Gould SJ. 1977. Ontogeny and phylogeny. Cambridge: Harvard University Press.
Gower JC. 1975. Generalised Procrustes analysis. Psychmetrika 40:33-50. doi:10.1007/BF02291478
Hadziselimovic H, Cus M. 1966. The appearance of internal structures of the brain in relation to configuration of the human skull. Cells Tissues Organs 63:289-299. doi:10.1159/000142794
Hadziselimovic H, Ruzdic N. 1966. Appearance of the base of the brain in relation to the configuration of human skull. Cells Tissues Organs 65:146-156. doi:10.1159/000142869
Hallgrímsson B, Lieberman DE, Young NM, Parsons T, Wat S. 2007a. Evolution of covariance in the mammalian skull. Novartis Found Symp 284:164-190. doi:10.1002/9780470319390.ch12
Hallgrímsson B, Lieberman DE, Liu W, Hutchinson AF, Jirik FR. 2007b. Epigenetic interactions and the structure of phenotypic variation in the cranium. Evol Dev 9:76-91. doi:10.1111/j.1525-142X.2006.00139.x
Herring SW, Teng S. 2000. Strain in the braincase and its sutures during function. Am J Phys Anthropol 112:575-593. doi:10.1002/1096-8644(200008)112:4<575::AIDAJPA10>3.0.CO;2-0
Howells WW. 1973. Cranial variation in man. Papers of the Peabody Museum of Archaeology and Ethnology. Cambridge: Harvard University Press.
Kent JT. 1994. The complex Bingham distribution and shape analysis. J Roy Statist Soc B 56:285-299.
Klingenberg CP. 1998. Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biol Rev 73:79-123. doi:10.1017/S000632319800512X
Klingenberg CP. 2011. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353-357. doi:10.1111/j.1755-0998.2010.02924.x
Kuykendall KL. 1996. Dental development in chimpanzees (Pan troglodytes): the timing of tooth calcification stages. Am J Phys Anthropol 99:135-157. doi:10.1002/(SICI)1096-8644(199601)99:1<135::AIDAJPA8>3.0.CO;2-#
Leigh SR, Shea BT. 1996. Ontogeny of body size variation in African apes. Am J Phys Anthropol 99:43-65. doi:10.1002/(SICI)1096-8644(199601)99:1<43::AIDAJPA3>3.0.CO;2-0
LeMay M. 1976. Morphological cerebral asymmetries of modern man, fossil man, and nonhuman primate. Ann New York Acad Sc 280:349-366. doi:10.1111/j.1749-6632.1976.tb25499.x
Lestrel PE, Bodt A, Swindler DR. 1993. Longitudinal study of cranial base shape changes in Macaca nemestrina. Am J Phys Anthropol 91:117-129. doi:10.1002/ajpa.1330910108
Lieberman DE, McCarthy RC. 1999. The ontogeny of cranial base angulation in humans and chimpanzees and its implications for reconstructing pharyngeal dimensions. J Hum Evol 36:487-517. doi:10.1006/jhev.1998.0287
Lieberman DE, Carlo J, Ponce de León M, Zollikofer CPE. 2007. A geometric morphometric analysis of heterochrony in the cranium of chimpanzees and bonobos. J Hum Evol 52:647-662. doi:10.1016/j.jhevol.2006.12.005
Lieberman DE, McBratney BM, Krovitz GE. 2002. The evolution and development of craniofacial form in Homo sapiens. Proc Natl Acad Sci USA 99:1134-1139. doi:10.1073/pnas.022440799
Lieberman DE, Krovitz GE, McBratney-Owen B. 2004. Testing hypotheses about tinkering in the fossil record: the case of the human skull. J Exp Zool B Mol Dev Evol 302:284-301. doi:10.1002/jez.b.21004
Lieberman DE, Ross CF, Ravosa MJ. 2000. The primate cranial base: ontogeny, function, and integration. Yrbk Phys Anthropol 43:117-169. doi:10.1002/1096-8644(2000)43:31+<117::AID-AJPA5>3.3.CO;2-9
Martínez-Abadías N, Esparza M, Sjøvold T, González-José R, Santos M, Hernández M, Klingenberg CP. 2012. Pervasive genetic integration directs the evolution of human skull shape. Evolution 66:10-23. doi:10.1111/j.1558-5646.2011.01496.x
McCarthy RC. 2001. Anthropoid cranial base architecture and scaling relationships. J Hum Evol 40:41-66. doi:10.1006/jhev.2000.0446
McHenry HM, Coffing K. 2000. Australopithecus to Homo: transformations in body and mind. Ann Rev Anthropol 29:125-146. doi:10.1146/annurev.anthro.29.1.125
Mitteroecker P, Bookstein F. 2008. The evolutionary role of modularity and integration in the hominoid cranium. Evolution 62:943-958. doi:10.1111/j.1558-5646.2008.00321.x
Mitteroecker P, Gunz P, Bernhard M, Schaefer K, Bookstein FL. 2004. Comparison of cranial ontogenetic trajectories among great apes and humans. J Hum Evol 46:679-698. doi:10.1016/j.jhevol.2004.03.006
Moss ML, Young RW. 1960. A functional approach to craniology. Am J Phys Anthropol 18:281-291. doi:10.1002/ajpa.1330180406
Neubauer S, Gunz P, Hublin JJ. 2010. Endocranial shape changes during growth in chimpanzees and humans: a morphometric analysis of unique and shared aspects. J Hum Evol 59:555-566. doi:10.1016/j.jhevol.2010.06.011
O’Higgins P, Jones N. 1998. Facial growth in Cercocebus torquatus. An application of three-dimensional geometric morphometric techniques to the study of morphological variation. J Anat 193:251-272. doi:10.1046/j.1469-7580.1998.19320251.x
Penin X, Berge C, Baylac M. 2002. Ontogenetic study of the skull in modern humans and the common chimpanzees: neotenic hypothesis reconsidered with a tridimensional Procrustes analysis. Am J Phys Anthropol 118:50-62.
Richtsmeier JT, Aldridge K, DeLeon VB, Panchal J, Kane AA, Marsh JL, Yan P, Cole TM. 2006. Phenotypic integration of neurocranium and brain. J Exp Zool Part B 306:360-378. doi:10.1002/ajpa.10044
Rohlf F J, Corti M. 2000. Use of two-block partial leastsquares to study covariation in shape. Syst Biol 49:740-753. doi:10.1080/106351500750049806
Rohlf F, Slice DE. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40-59. doi:10.2307/2992207
Schaefer K, Mitteroecker P, Gunz P, Bernhard M, Bookstein FL. 2004. Craniofacial sexual dimorphism patterns and allometry among extant hominids. Ann Anat 186:471-478. doi:10.1016/S0940-9602(04)80086-4
Smith HB. 1989. Dental development as a measure of life history in primates. Evolution 43:683-688. doi:10.2307/2409073
Vrba ES. 1998. Multiphasic growth models and the evolution of prolonged growth exemplified by human brain evolution. J Theor Biol 190:227-239. doi:10.1006/jtbi.1997.0549
Zafar H, Nordh E, Eriksson PO. 2000. Temporal coordination between mandibular and head-neck movements during jaw opening-closing tasks in man. Arch Oral Biol 45:675-682. doi:10.1016/S0003-9969(00)00032-7
variation in population-scale sequenced human genomes. PLoS Genet 7(7):e1002144. doi:10.1371/journal. pgen.1002144
Moss ML, Young RW. 1960. A functional approach to craniology. Am J Phys Anthropol 18:281-292. doi:10.1002/ajpa.1330180406
Perelman P, Johnson WE, Roos C, Seuánez HN, Horvath JE, Moreira MAM, Kessing B, Pontius J, Roelke M, Rumpler Y, Schneider MPC, Silva A, O’Brien SJO, Pecon-Slattery J. 2011. A molecular phylogeny of living primates. PLoS Genet 7(3):e1001342. doi:10.1371/journal.pgen.1001342
Perez SI, Klaczko J, dos Reis SF. 2012. Species tree estimation for a deep phylogenetic divergence in the New World monkeys (Primates: Platyrrhini). Mol Phylogenet Evol 65:621-630. doi:10.1016/j.ympev.2012.07.014
Pucciarelli HM. 2008. Evolución y diversificación biológica humana desde la perspectiva craneofuncional. México: Universidad Autónoma de México, Instituto de Investigaciones Antropológicas, ENAH.
Pucciarelli HM, Ramirez Rozzi FV, Muñe MC, Sardi ML. 2006. Variation of functional cranial components in six Anthropoidea species. Zoology (Jena) 109(3):231-243. doi:10.1016/j.zool.2006.02.002
Pucciarelli HM, Pérez SI, Politis GG. 2010. Early holocene human remains from the Argentinean Pampas: additional evidence for distinctive cranial morphology of early South Americans. Am J Phys Anthropol 143:298-305. doi:10.1002/ajpa.21347
R-Development Core Team. 2012. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org
Rambaut A, Drummond AJ. 2007. Tracer v1.5 software.<http://www.beast.bio.ed.ac.uk/Tracer>.
Rohlf FJ. 2001. Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55:2143-2160. doi:10.1111/j.0014-3820.2001.tb00731.x
Ross C, Henneberg M. 1995. Basicranial flexion, relative brain size, and facial Kyphosis in Homo sapiens and some fossil hominids. Am J Phys Anthropol 98:575-593. doi:10.1002/ajpa.1330980413
Smith RJ, Jungers WL. 1997. Body mass in comparative primatology. J Hum Evol 32:523-559. doi:10.1006/jhev.1996.0122
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28:2731-2739. doi:10.1093/molbev/msr121
Thalib L, Kitching RL, Bhatti MI. 1999. Principal component analysis for grouped data: a case study. Environmetrics 10:565-574. doi:10.1002/(SICI)1099-095X(199909/10)10:5<565::AID-ENV360>3.0.CO;2-R
van der Klaauw CJ. 1948-1952. Size and position of the functional components of the skull. Archaeol Neerl Zool 9:1-559. doi:10.1163/187530152X00017
Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Jonathan Davies T, Grytnes JA, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR. 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310-1324. doi:10.1111/j.1461-0248.2010.01515.x
Wildman DE, Jameson NM, Opazo JC, Yi SV. 2009. A fully resolved genus level phylogeny of neotropical primates (Platyrrhini). Mol Phylogenet Evol 53:695-702. doi:10.1016/j.ympev.2009.07.019
Wilkinson RD, Steiper ME, Soligo C, Martin RD, Yang Z, Tavaré S. 2011. Dating Primate divergences through an integrated analysis of palaeontological and molecular data. Syst Biol 60:16-31. doi:10.1093/sysbio/syq054
Descargas
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
La RAAB es una revista de acceso abierto tipo diamante. No se aplican cargos para la lectura, el envío de los trabajos ni tampoco para su procesamiento. Asímismo, los autores mantienen el copyright sobre sus trabajos así como también los derechos de publicación sin restricciones.