DESARROLLO DE SÍNTESIS ECO-AMIGABLE DE COMPUESTOS QUINOLINICOS

  • Claudia Lorena Macias Socha Maestría en Química, Universidad Pedagógica y Tecnológica de Colombia. Av. Central del Norte 39-115. Tunja, Boyacá, Colombia
  • Gloria Astrid Prieto Suarez Maestría en Química, Universidad Pedagógica y Tecnológica de Colombia. Av. Central del Norte 39-115. Tunja, Boyacá, Colombia
  • Gustavo Pablo Romanelli Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. Jorge J. Ronco” (CINDECA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 Nº 257, CP(1900), La Plata, BsAs, Argentina

Resumen

Las quinolinas son heterociclos de alta importancia debido a sus diversas aplicaciones, especialmente en la industria farmacéutica; en los últimos años ha incrementado el interés por estudiar el desarrollo de dichos compuestos,  más aún si su síntesis es amigable con el medio ambiente. Este trabajo presenta a grandes rasgos los últimos avances, modificaciones y nuevas síntesis de compuestos quinolinicos que son alternativas eco-amigables. Dentro de las síntesis planteadas están las que implementan el uso de microondas, vibración ultrasonido, catalizadores que pueden ser reciclados y reutilizados, uso de arcillas, líquidos iónicos, reacciones one-pot, radiación UV y en condiciones libre de solvente

Citas

[1]K.V. Padoley, S.N. Mudliar, R.A. Pandey., “Heterocyclic nitrogenous pollutants in the environment and their treatment options an overview”. Bioresour. Technol., 99, 2008, 4029–4043.

[2] Q. Lin, W., Jianlong “Biodegradation characteristics of quinoline by Pseudomonas putida.” Bioresour. Technol., 101, 2010. 7683–7686.

[3] J. Neuwoehner, A., Reineke, J., Hollender, A., Eisentraeger. “Ecotoxicity of quinoline and hydroxylated derivatives and their occurrence in groundwater of a tar-contaminated field site”. Ecotoxicol. Environ. Saf., 72, 2009, 819–827.

[3b] C. Meléndez-Gómez, V. Kouznetsov., “alcaloides quinolínicos: importancia biológica y esfuerzos sintéticos” Universitas Scientiarum 10, N° 2, 2005, 5-18.

[4] S.C. Teguh, N. Klonis, S. Duffy, L. Lucantoni, V. M. Avery, C. A. Hutton, J. B. Baell, L. “Novel conjugated quinoline-indoles compromise Plasmodium falciparum mitochondrial function and show promising antimalarial activity”. J. Med. Chem., 56, 2013, 6200–6215.

[5] B. Heiniger, G. Gakhar, K. Prasain, DH. Hua, TA. Nguyen, “Second-generation Substituted Quinolines as Anticancer Drugs for Breast” Cancer Anticancer Res., 30, 2010. 3927–3932.

[6] V.V. Kouznetsov, CM. Meléndez, MG. Derita, L. Svetaz, E. del Olmo, SA, Zacchino, “Synthesis and antifungal activity of diverse C-2 pyridinyl and pyridinylvinyl substituted quinolones” Bioorg. Med. Chem., 20, 2012, 6506–6512.

[7] M.O. Puskullu, B. Tekiner, S. Suzen “Recent studies of antioxidant quinoline derivatives”. Mini-Rev. Med. Chem., 13, 2013, 365–372.

[8] D. Bompart, J. Nuñez-Durán, D. Rodríguez, V. Kouznetsov, CM Meléndez, F. Sojo, F. Arvelo, G. Visbal, A. Alvarez, X. Serrano-Martín, Y. García-Marchán, "Anti-leishmanial evaluation of C2-aryl quinolines. Mechanistic insight on bioenergetics and sterol biosynthetic pathway of Leishmania braziliensis parasite". Bioorg. Med. Chem., 21, 2013, 4426–4431.

[8b] S. Murru, B. McGough, R. Srivastava. “Synthesis of substituted quinolines via allylic amination and intramolecular Heck-coupling” Org. Biomol. Chem., 2014,12, 9133-9138.

[9] J. Akbari, A. Heydar, H. Reza Kalhor, SA Kohan. , et al., “Sulfonic Acid Functionalized Ionic Liquid in Combinatorial Approach, a Recyclable and Water Tolerant-Acidic Catalyst for One-Pot Friedlander Quinoline Synthesis”. J. Comb. Chem. 12 (1), 2010, 137-140.

[10] Y. Tokoro, A. Nagai, K. Kokado and Y. Chujo, “Nanoparticle via H-Aggregation of Amphiphilic BODIPY Dyes” Tetrahedron Lett., 42, 2009, 2988–2993.

[11]G. J´egou and S. A. Jenekhe, “Highly fluorescent poly(arylene-ethynylene)s containing quinoline and 3-alkylthiophene”.Macromolecules, 34, 2001, 7926–7928.

[12] J. Kim , S. Ik-Soo, K. Hasuck, L. Jin-Kyu., “Efficient Electrogenerated Chemiluminescence from Cyclometalated Iridium(III) Complexes” J. Am. Chem. Soc., 127, 2005, 1614–1615.

[12b] Z. Wang., “Comprehensive Organic Name Reactions and Reagents”, John Wiley & Sons, Inc. 2010.

[13] J. Li., “Name Reactions”, Springer, 2009, 263. Berlin Heidelberg

[14] S. Yamashkin, E. Oreshkina., “Traditional and modern approaches to the synthesis of quinoline systems by the Skraup and Doebner-Miller methods. (Review)” Chem. Heterocycl. Compd., 42 2006, 701.

[15] Hector Go., “Quinolinas e isoquinolinas.” [on line]. Disponible en: http://depa.fquim.unam.mx/amyd/archivero/06QuinolinaseIsoquinolinas_24315.pdf . Visitado en Oct 2015

[16] Organic Syntheses, Methods for the Preparation
of Organic Compounds Coll. Vol. 3 and 28, 1948 56 and 11
Friedländer, P.; Gohring, C. F. Ber., Síntesis de quinolinas de Friedländer 16, 1883, 1833. A.H. Li, et al., Org. Biomol. Chem., 5, p. 61(2007)

[17] Skraup, Z. H. “Eine Synthese des Chinolins”. Ber 13: 1880, 2086. Manske, R. H. F. “The Chemistry of Quinolines”. Chem.Rev. 30, 1942, 113.

[18] Doebner, O.; Miller, W. v. Ueber die Homologen des Chinaldins. Ber. , 17,1884, 1712.

[19] Combes, A. Bull. Chim. Soc. France 49, 1888, 89.
Bergstrom, F. W. “Hexaacylic Compounds: Pyridine, Quinoline, and Isoquinoline In Heterocyclic Nitrogen Compounds.” Chem. Rev. 35, 1944, 156.

[20] Conrad, M.; Limpach, L. “Synthese von Chinolinderivaten mittelst Acetessigester” Chemische Berichte. 24, 1891, 2990-2992.

[21] J.M. Contelles, E. Pérez-Mayoral, A. Samadi, M. Carreiras, E. Soriano, “Recent advances in the Friedländer reaction” Chem. Rev.,109, 2009, 2652.

[22] Camps, R.; Ber. , 22, 1899, 3228. Camps, R.; Arch. Pharm. , 239, 1901, 591. Manske, R. H. F.; Chem. Rev. 30, 1942, 127. Review

[23] Pfitzinger, W. J. Prakt. Chem. , 33, 1886, 100. Pfitzinger, W. J. Prakt. Chem. , 38, 1888, 582. Shvekhgeimer, M. G.-A. Chemistry of Heterocyclic Compounds , 40, 2004, 257-294.

[24] Organic Syntheses, A Publication of Reliable Methods for the Preparation of Organic Compounds. Coll. Vol. 3, p.272; Vol. 28, 1955, 38.

[25] M. Arnould, MA. HiebeL, S. Massip, JM. Léger, C. Jarry, S. Berteina-Raboin, G. Guillaumet, “Efficient Metal-Free Synthesis of Various Pyrido[2′,1′:2,3]imidazo- [4,5-b]quinolines” Chem. Eur. J., 19, 2013, 12249–12253.

[26] K. Rad-Moghadam, S. Cobra, E. Abbaspour-Gilandeh “Synthesis of Novel Pyrano[3,2-c]quinoline-2,5-diones Using an Acidic Ionic Liquid Catalyst”. Tetrahedron Lett., 54, 2013, 4633–4636

[27] A.S. Al-Bogami, TS. Saleh, EM. Zayed., “Divergent reaction pathways for one-pot, three-component synthesis of novel 4H-pyrano[3,2-h]quinolines under ultrasound irradiation”. Ultrason. Sonochem., 20, 2013, 1194–1202.

[28] J. Wu, HG. Xia, K. Gao, “Molecular iodine: a highly efficient catalyst in the synthesis of quinolines via Friedländer annulation” J. Org. Biomol. Chem., 4, 2006, 126–129.

[29] B.V.S. Reddy, A. Venkateswarlu, G. Niranjan Reddy, Y.V. Rami Reddy, “Chitosan-SO3H: an efficient, biodegradable, and recyclable solid acid for the synthesis of quinoline derivatives via Friedländer annulation.” Tetrahedron Lett., 54, 2013, 5767–5770.

[30] M. Abdollahi-Alibeik, M. Pouriayevali, “Nanosized MCM-41 supported protic ionic liquid as an efficient novel catalytic system for Friedlander synthesis of quinolines.” Catal. Commun., 22, 2012,. 13–18.

[31] J. López-Sanz, E. Perez-Mayoral, E. Soriano, M. Sturm, R.M. Martín-Aranda, A.J Lopez-Peinado, J. Cejka, “New inorganic–organic hybrid materials based on SBA-15 molecular sieves involved in the quinolines synthesis.” Catal. Today, 187 2012, 97–103.

[32] J. S. Yadav, P. Purushothama Rao, D. Sreenu, R. Srinivasa Rao, V. Naveen Kumar, K. Nagaiah, A.R. Prasad, “Sulfamic acid: an efficient, cost-effective and recyclable solid acid catalyst for the Friedlander quinoline synthesis.” Tetrahedron Lett., 46, 2005, 7249–7253.

[33] J.M. Nezhad, J. Akbari, A. Heydari, B. Alirezapour, “CuO Nanoparticles as an Efficient and Reusable Catalyst for the One-pot Friedlander Quinoline Synthesis”. Korean Chem. Soc., 32, 2011, 3853–3854.

[34] A.B. Atar, S.D. Dindulkar, Y.T. Jeong Monatsh. “Lithium triflate (LiOTf): a highly efficient and reusable catalytic system for the synthesis of diversified quinolines under neat conditions”. Chem., 144, 2013, 695–701.

[35] E. Kolvari, M. Ali Zolfigol, N. Koukabi, M. Gilandust, A-V Kordi, “Zirconium triflate: An efficient catalyst for the synthesis of quinolines and quinoxalines.” J. Iran Chem. Soc., 10, 2013, 1183–1191.

[36] B. C. Ranu, A. Hajra and U. Jana, “Microwave-assisted simple synthesis of quinolines from anilines and alkyl vinyl ketones on the surface of silica gel in the presence of indium (III) chloride”. Tetrahedron Lett., 41, 2000, 531–533.

[37] T. Chanda, RK. Verma, MS Singh, “InCl3-Driven Regioselective Synthesis of Functionalized/Annulated Quinolines: Scope and Limitations.” Chem. Asian J., 7, 2012, 778–787.

[38] K. Motokura, T. Mizugaki, K. Ebitani, K. Kaneda, “Multifunctional catalysis of a ruthenium-grafted hydrotalcite: One-pot synthesis of quinolines from 2-aminobenzylalcohol and various carbonyl compounds via aerobic oxidation and aldol reaction”. Tetrahedron Lett., 45, 2004, 6029–6032.

[39] Rao S., Tetrahedron Lett., 46, 2005, 7249–7253.

[40] Vu A. T., et al. “ERβ ligands. Part 4: Synthesis and structure–activity relationships of a series of 2-phenylquinoline derivatives,” Bioorg. Med. Chem. Lett., 15, 2005, 4520–4525.

[41] M. K. Chaudhuri and S. Hussain, “An efficient synthesis of quinolines under solvent-free conditions” J. Chem. Sci., 118, 2006, 199–202.

[42] SHU-Xiang. “Quinoline-Based Fluorescence Sensors. [online]” 2006

[43] M.K. Chaudhuri, S. Hussain “An efficient synthesis of quinolines under solvent-free conditions”., J. Organomet. Chem., , 692, 2007,4182–4186.

[44] J. Safari, S. Banitaba, S. Samiei, “One-pot synthesis of quinaldine derivatives by using microwave irradiation without any solvent – A green chemistry approach.” J. Chem. Sci., 121, 2009, 481–484.

[45] H.R. Prakash Naik; H.S. Bhojya Naik,; T.R. Ravikumar Naik; H.R. Naik,; M. Raghavendra,; T. Aravinda,; D.S. Lamani, “Phosphorus Sulfur Silicon” Relat. Elem. 184, 2009, 2109–2114.

[46] T. Mitamura, K. Iwata, A. Nomoto, A. Ogawa, “Photochemical intramolecular cyclization of o-alkynylaryl isocyanides with organic dichalcogenides leading to 2,4-bischalcogenated quinolines” Biomol. Chem., 9, 2011, 3768–3775.

[47] M. R. Heravi, “An efficient synthesis of quinolines derivatives promoted by a room temperature ionic liquid at ambient conditions under ultrasound irradiation via the tandem addition/annulation reaction of o-aminoaryl ketones with alpha-methylene ketones.” Ultrason. Sonochem., 16, 2009, 361–366.

[48] K. Selvam and M. Swaminathan, “Nano N-TiO2 mediated selective photocatalytic synthesis of quinaldines from nitrobenzenes.” RSC Adv., 2, 2012, 2848– 2855. K. Selvam and M. Swaminathan, “Au-doped TiO2 nanoparticles for selective photocatalytic synthesis of quinaldines from anilines in ethanol” Tetrahedron Lett., 51, 2010, 4911–4914. K. Selvam and M. Swaminathan, “Cost effective one-pot photocatalytic synthesis of quinaldines from nitroarenes by silver loaded TiO2” J. Mol. Catal. A: Chem., 351, 2011, 52–61.

[49] Teimouri, A., Najafi Chermahini, A. “A mild and highly efficient Friedla¨nder synthesis of quinolines in the presence of heterogeneous solid acid nano-catalyst.” Arabian Journal of Chemistry 2011, Available online .

[50] A. Kulkarni and B. Torok, “Microwave-assisted multicomponent domino cyclization–aromatization: an efficient approach for the synthesis of substituted quinolines.” Green Chem., 12, 2010, 875–878. [51] H. Zhu, R.F Yang, L. Hong, J. Li, Chinese Chem Lett., 21, 2010, 35–38.

[52] M. Hosseini-Sarvari, “Synthesis of quinolines using Nano-Flake ZnO as a new catalyst under solvent-free conditions.” J. Iran. Chem. Soc., 8, 2011, 119–128.

[53] C. Praveen, P. DheenKumar, D. Muralidharan, P T Perumal, “Synthesis, antimicrobial and antioxidant evaluation of quinolines and bis(indolyl)methanes” Bioorg. Med. Chem. Lett., 20, 2010, 7292– 7296.

[54] B. Mirza and S. S. Samiei, J. Chem. Eng., 5, 2011, 644–647.

[55] G. Nagendrappa, “Review: Organic synthesis using clay and clay-supported catalysts •” Appl. Clay Sci., 53, 2011, 106–138

[56] M. Jida and B. Deprez, New J. Chem., 36, 2012, 869.

[57] S. Gogoi, K. Shekarrao, A. Duarah, TC. Bora, S. Gogoi, RC Boruah, “A microwave promoted solvent-free approach to steroidal quinolines and their in vitro evaluation for antimicrobial activities,” Steroids, 77, 2012, 1438–1445.

[58] C. Yao, Q. Bingbin, Z. Honghong, L. Jun, W. Donglin, T. Shujiang, “One-pot solvent-free synthesis of quinolines by C–H activation/C–C Bond formation catalyzed by recyclable iron(III) triflate” RSC Adv.,2, 2012, 3759-3764.

[59] ZQ. Liu, GL. Xi, “Solvent-free Povarov reaction for synthesizing ferrocenyl quinolines: Antioxidant abilities deriving from ferrocene moiety.” European Journal of Medicinal Chemistry 86, 2014,759–768.

[60] Coelho F., “An improved method for the regioselective synthesis of highly substituted quinolines from Morita–Baylis–Hillman adducts” Tetrahedron Lett., 56, ,2015, 2871-2874

[61] H. Huang, H. Jiang, K. Chen and H. Liu, “A Simple and Convenient Copper-Catalyzed Tandem Synthesis of Quinoline-2-carboxylates at Room Temperature” J. Org. Chem., ,74, 2009, 5476–5480.

[62] H. S. Joo, K. H. Park. K. Ahn, K. Jun “One step synthesis of 4-ethoxy-1,2,3,4- tetrahydroquinoline from nitroarene and ethanol: A TiO2 mediated photocatalytic reaction.” Tetrahedron Lett., 36, 1995, 5943–5946.
Publicado
2016-09-07
Cómo citar
MACIAS SOCHA, Claudia Lorena; PRIETO SUAREZ, Gloria Astrid; ROMANELLI, Gustavo Pablo. DESARROLLO DE SÍNTESIS ECO-AMIGABLE DE COMPUESTOS QUINOLINICOS. Investigación Joven, [S.l.], v. 3, n. 1, sep. 2016. ISSN 2314-3991. Disponible en: <http://revistas.unlp.edu.ar/InvJov/article/view/2768>. Fecha de acceso: 24 mar. 2017
Sección
Recopilaciones temáticas

Palabras clave

Química Verde; Quinolinas; Heterociclos; Síntesis