Intermethod error in geometric morphometric and the relevance of texturization and landmark marking

Authors

  • Manuel Domingo D'Angelo del Campo Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico-Tandil (CONICET, CCT Tandil). Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA). Facultad de Ciencias Sociales (FACSO). Laboratorio de Ecología Evolutiva Humana (LEEH). Unidad de Enseñanza Universitaria Quequén (UEUQ). Provincia de Buenos Aires. Argentina. Laboratorio de Poblaciones de Pasado (LAPP). Departamento de Biología. Universidad Autónoma de Madrid (UAM). Madrid. España. https://orcid.org/0000-0001-5079-779X
  • Laura Medialdea Laboratorio de Poblaciones de Pasado (LAPP). Departamento de Biología. Universidad Autónoma de Madrid (UAM). Madrid. España. https://orcid.org/0000-0002-9500-7621
  • Pamela García Laborde Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA). Facultad de Ciencias Sociales (FACSO). Laboratorio de Ecología Evolutiva Humana (LEEH). Unidad de Enseñanza Universitaria Quequén (UEUQ). Provincia de Buenos Aires. Argentina. https://orcid.org/0000-0001-9989-3918
  • Daniel García-Martínez Unidad de Antropología Física. Departamento de Biodiversidad, Ecología y Evolución. Universidad Complutense de Madrid (UCM). Madrid. España. Centro Nacional de Investigación sobre la Evolución Humana (CENIEH). Burgos. España. Laboratorio de Antropología Forense. Centro de Ecología Funcional. Departamento de Ciências da Vida. Universidade de Coimbra (UC). Coimbra. Portugal https://orcid.org/0000-0001-7518-3866
  • Markus Bastir Departamento de Paleobiología. Grupo de Paleoantropología. Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid. España. https://orcid.org/0000-0002-3141-3401
  • Rolando González-José Instituto Patagónico de Ciencias Sociales y Humanas. Centro Nacional Patagónico (CENPAT-CONICET). Puerto Madryn. Argentina. https://orcid.org/0000-0002-8128-9381
  • Armando González Martín Laboratorio de Poblaciones de Pasado (LAPP). Departamento de Biología. Universidad Autónoma de Madrid (UAM). Madrid. España. https://orcid.org/0000-0001-9216-1220
  • Ricardo Anibal Guichón Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico-Tandil (CONICET, CCT Tandil). Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA). Facultad de Ciencias Sociales (FACSO). Laboratorio de Ecología Evolutiva Humana (LEEH). Unidad de Enseñanza Universitaria Quequén (UEUQ). Provincia de Buenos Aires. Argentina. https://orcid.org/0000-0002-3945-1605

DOI:

https://doi.org/10.24215/18536387e057

Keywords:

Bioanthropology, virtual anthropology, Southern Patagonia

Abstract

Morphometric analyses lead to biases in the level of precision, and therefore, error. Geometric morphometrics development has made it possible to create digital collections composed by records from diverse sources. The combined use of data obtained through multiple methods introduces a new type of error, the inter-method error. The joint use of distinct digitization sources will result in low error, as long as there are no significant differences in the results obtained among techniques. An analysis of the Procustes variance, a principal component analysis on the Procrustes coordinates and a hierarchical cluster analysis were carried out to analyse the inter-method and intra-observer error in eight human skulls from Southern Patagonia, digitized by computerized tomography, surface scanner and photogrammetry, using 35 landmarks type I, II and III. The results show that there are no significant differences between the digitization sources, so 3D files from different sources could be used together. No significant intra-observer error was observed for any of the sources, also presenting a lower magnitude than the intermethod error. In the present study, photogrammetry, the only method that permits
recovering the texture and in which the landmarks were previously indicated, is the source that presents the lowest error. Based on the results obtained, it is suggested that it is possible to perform satisfactory geometric morphometric analyses regardless of the source used for its registration, considering those analysed here, highlighting the influence of the texture and the registration of landmarks on the degree of error.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Arnqvist, G. y Martensson, T. (1998). Measurement error in geometric morphometrics: empirical strategies to assess and reduce. Acta Zoologica Academiae Scientiarum Hungaricae, 44, 73-96.

Balolia, K. L. y Massey, J. S. 2021. How does scanner choice and 3D model resolution affect data accuracy? Journal of Anatomy 238(3), 679-692. https://doi.org/10.1111/joa.13343

Barbeito-Andrés, J., Anzelmo, M., Ventrice, F. y Sardi, M. L. (2012). Measurement error of 3D cranial landmarks of an ontogenetic sample using Computed Tomography. Journal of Oral Biology and Craniofacial Research, 2(2), 77-82. https://doi.org/10.1016/j.jobcr.2012.05.005

Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge University Press.

Brzbohatá, H., Prokop, J., Horák, M., Jančárck, A. y Velemínská, J. (2012). Accuracy and benefits of 3D bone surface modelling: a comparison of two methods of surface data acquisition reconstructed by laser scanning and computed tomography outputs. Collegium Antropologicum, 36(3), 801-806.

Buikstra, J. E. y Ubelaker, D. H. (1994). Standards for data collection from human skeletal remains. Arkansas Archaeological Survey Research Series N.44.

Burghardt, A. J., Link, T. M. y Majumdar, S. (2011). High resolution computed tomography for clinical imaging of bone microarchitecture. Clinical Orthopaedics and Related Research, 469(8), 2179-2193. https://doi.org/10.1007/s11999-010-1766-x

Buzi, C., Micarelli, I., Profico, A., Conti, J., Grassetti, R., Cristiano, W., Di Vincenzo, F., Tafuri, M. A. y Manzi, G. (2018). Measuring the shape: performance evaluation of a photogrammetry improvement applied to the Neanderthal skull Saccopastore 1. Acta Imeko, 7(3), 79-85.

Chiari, Y., Wang, B., Rushmeier, H. y Caccone, A. (2008). Using digital images to reconstruct three-dimensional biological forms: a new tool for morphological studies. Biological Journal of the Linnean Society, 95(2), 425-436. https://doi.org/10.1111/j.1095-8312.2008.01055.x

von Cramon-Taubadel, N., Frazier, B. C. y Lahr M. M. (2007). The problem of assessing landmark error in geometric morphometrics: theory, methods, and modifications. American Journal of Physical Anthropology, 134(1), 24-35. https://doi.org/10.1002/ajpa.20616

D’Angelo del Campo, M. D., Curti, H., López, M. G., García Laborde, P., Valenzuela, L. O., Motti, J. M. B., Martucci, M., Palacio, P. I., González Martín, A. y Guichón, R. A. (2020). Base de Información Bioantropológica de Patagonia Austral (B.I.B.P.A). Revista Argentina de Antropología Biológica, 22(2), 1-13. http://doi.org/10.24215/18536387e018

Dudzik, B. y Kolatorowicz, A. (2016). Craniometric data analysis and estimation of biodistances. En M. A. Pilloud, y J. T. Hefner (Eds.), Biological distance analysis. Forensic and bioarchaeological perspectives (pp. 35-60). Elsevier Academic Press. http://doi.org/10.1016/B978-0-12-801966-5.00003-2

Evin, A., Souter, T., Hulme-Beaman, A., Ameen, C., Allen, R., Viacava, P., Larson, G., Cucchi, R. y Dobney, K. (2016). The use of close-range photogrammetry in zooarchaeology: creating accurate 3D models of wolf crania to study dog domestication. Journal of Archaeological Sciences: Reports, 9, 87-93. https://doi.org/10.1016/j.jasrep.2016.06.028

Ford, J. M. y Decker, S. J. (2016). Computed tomography slice thickness and its effects on three-dimensional reconstruction of anatomical structures. Journal of Forensic Raidology and Imaging, 4, 43-46. https://doi.org/10.1016/j.jofri.2015.10.004

Fourie, Z., Damstra, J., Gerrits, P. O. y Ren Y. (2011). Evaluation of anthropometric accuracy and reliability using different three-dimensional scanning systems. Forensic Science International, 207(1-3), 127-134. https://doi.org/10.1016/j.forsciint.2010.09.018

Fox, N. S., Veneración, J. J. y Blois, J. L. (2020). Are geometric morphometric análisis replicable? Evaluating landmark measurement error and its impact on extant and fossil Microtus classification. Ecology and Evolution, 10(7), 3260-3275. https://doi.org/10.1002/ece3.6063

Friess, M. (2012). Scratching the surface? The use of surface scanning in physical and paleoanthropology. Journal of Anthropological Sciences, 90, 1-25.

Fruciano, C. (2016). Measurement error in geometric morphometrics. Development, genes and evolution, 226(3), 139-158. https://doi.org/10.1007/s00427-016-0537-4

Fruciano, C., Celik, M. A., Butler, K., Dooley, T., Weisbecker, V. y Philips, M. J. (2017). Sharing is caring? Measurement error and the issues arising from combining 3d morphometric datasets. Ecology and Evolution, 7(17), 7034-7046. https://doi.org/10.1002/ece3.3256

González, P. N., del Papa, M. y Gordón, F. (2004). El error de observación y su influencia en los análisis morfológicos de restos óseos humanos. Revista Argentina de Antropología Biológica, 6(1), 61-75.

Hassett, B. R. y Lewis-Bale, T. (2016). Comparison of 3D landmark and 3D dense cloud approaches to hominin mandible morphometrics using structure from motion. Archaeometry, 59(1), 191-203. https://doi.org/10.1111/arcm.12229

Jurda, M. y Urbanová, P. (2016). Three-dimensional documentation of Dolní Vestonice skeletal remains: can photogrammetry substitute laser scanning? Antrhropologie. International Journal of Human Diversity and Evolution, LIV(2), 109-118.

Katz, D. y Friess, M. (2014). Technical note: 3D from standard digital photography of human crania – A preliminary assessment. American Journal of Physical Anthropology, 154(1), 152-158. https://doi.org/10.1002/ajpa.22468

Klingenberg, C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11(2), 353-357. https://doi.org/10.1111/j.1755-0998.2010.02924.x

Klingenberg, C. P., Barluenga, M. y Meyer, A. (2002). Shape analysis of symmetric structures: Quantifying variation among individuals and asymmetry. Evolution, 56(10), 1.909-1.920. https://doi.org/10.1111/j.0014-3820.2002.tb00117.x

Kullmer, O. (2008). Benefits and risks in virtual anthropology. Journal of Anthropological Science, 86, 205-207.

Kuzminsky, S. C. y Gardiner, M. S. (2013). Three-dimensional laser scanning: potential uses for museum conservation scientific research. Journal of Archaeological Science, 39(8), 2744-2755. https://oi.org/10.1016/j.jas.2012.04.020

Lemey, P., Salemi, M. y Vandamme, A.-W. (2009). The phylogenetic handbook. A practical phylogenetic analysis and typotesis Testing (2ª Ed.). Cambridge University Press.

Mathys, A., Brecko, J. y Semal, P. (2014). Cost analyse of 3D digitisation techniques. En: M. Ioannides, N., Magnenat-Thalmann, E., Fink, R., Zarnic, A.-Y- Yen y E. Quak (Eds.), 5th International conference; digital heritage, progress in cultural heritage: documentation, preservation, and protection. (pp. Vol 4, 206-212). Springer.

Muñoz-Muñoz, F. y Perpiñán, D. (2010). Measurement error in morphometric studies: comparison between manual and computerized methods. Annales Zoologici Fenici, 47(1), 46-56. https://doi.org/10.5735/086.047.0105

Muñoz-Muñoz, F., Quinto-Sánchez, M. y González-José, R. (2016). Photogrammetry: a useful tool for three-dimensional morphometric analysis of small mammals. Journal of Zoological Systematics and Evolutionary Research, 54(4), 318-325. https://doi.org/10.1111/jzs.12137

Ortiz Sanz, J., Gil Docampo, M., Martínez Rodríguez, S., Rego Sanmartín, M. T. y Mejide Cameselle, G. (2010). A simple methodology for recording petroglyphs using low-cost digital image correlation photogrammetry and consumer-grade digital cameras. Journal of Archaeological Science, 37(12), 3158-3169. https://doi.org/10.1016/j.jas.2010.07.017

Pérez, S. I., González, P. N., Bernal, V., del Papa, M. C., Barreiro, A., Negro, C. y Martínez, L. (2004). El error de observación y su influencia en los análisis morfológicos de restos óseos humanos. Revista Argentina de Antropología Biológica, 6(1), 61-75.

Profico, A., Bellucci, L., Buzi, C., Di Vincenzo, F., Micarelli, U., Strani, F., Tafuri, M. A. y Manzi, G. (2018). Virtual anthropology and its application in cultural heritage studies. Studies in Conservation, 64(6):323-336. https://doi.org/10.1080/00393630.2018.1507705

Robinson, C. y Terhune C. E. (2017). Error in geometric morphometric data collection: combining data from multiple sources. American Journal of Physical Anthropology, 164(1), 62-75. https://doi.org/10.1002/ajpa.23257

Rohlf, F. J. y Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39(1), 40–59. https://doi.org/10.2307/2992207

Ross, A. H. y Willians, S. (2008). Testing repeatability and error of coordinate landmark data acquired from crania. Journal of Forensic Science, 53(4), 782-785. https://doi.org/10.1111/j.1556-4029.2008.00751.x

Schlicher, W., Nielsen, I., Huang, J. C., Maki, K., Hatcher, D. C. y Miller, A. J. (2012). Consistency and precision in landmark identification in three dimensional cone beam computed tomography scans. European Journal of Orthodontics, 34(3), 263-275. https://doi.org/10.1093/ejo/cjq144

Sforza, C., de Menezes, M. y Ferrario, V. F. (2013). Soft- and hard-tissue facial anthropometry in three dimensions: what’s new. Journal of Anthropological Sciences, 91, 159-184.

Shearer, B. M., Cooke, S. B., Halenar, L. B., Reber, S. L., Plummer, J. E., Delson, E. y Tallman M. (2017). Evaluating causes of error in landmark-based data collection using scanners. PLoS ONE, 12(11), e0187452. https://doi.org/10.1371/journal.pone.0187452

Sholts, S. B., Flores, L., Walker, P. L. y Wärmländer, S. K. T. S. (2011). Comparison of coordinate measurement precision of different landmark types on human crania using 3D laser scanner and a 3d digitiser: implications for applications of digital morphometrics. International Journal of Osteoarchaeology, 21(5), 535-543. https://doi.org/10.1002/oa.1156

Spoor, F., Jeffery, N. y Zonneveld, F. (2000). Using diagnostic radiology in human evolutionary studies. Journal Anatomy, 197(1), 61-76. https://doi.org/10.1046/j.1469-7580.2000.19710061.x

Toneva, D., Nikolova, S., Georgiev, I. y Lazarov, N. (2020). Impact of resolution and texture of laser scanning generated three-dimensional models on landmark identification. The Anatomical Record, 303, 1950-1965. https://doi.org/10.1002/ar.24272

Veneziano, A., Landi, F. y Profico, A. (2018). Surface smoothing, decimation, and their effects on 3D biological specimens. American Journal of Physical Anthropology, 166(2), 473-480. https://doi.org/10.1002/ajpa.23431

Waltenbergerer, L., Rebay-Salisbury, K. y Mitteroecker, P. (2021). Three-dimensional surface scanning methods in osteology: a topographical and geometric morphometric comparison. American Journal of Physical Anthopology, 174(4), 846-858. https://doi.org/10.1002/ajpa.24204

Weber, G. W. (2015). Virtual anthropology. Yearbook of Physical Anthropology, 156(S59), 22-42. https://doi.org/10.1002/ajpa.22658

Weber, G. W., Recheis, W., Scholze, T. y Seidler, H. (1998). Virtual anthropology (VA): methodological aspects of linear and volume measurements, first results. Collegium antropologicum, 22(2), 575-584.

White, J. D., Ortega-Castrillón, A., Virgo, C., Indencleef, K., Hoskens, H., Shiver, M. D. y Claes, P. (2020). Sources of variation in the 3dMDface and Vectra H1 3D facial imaging systems. Scientific Reports, 10, 4443. https://doi.org/10.1038/s41598-020-61333-3

Published

2022-12-29

How to Cite

D’Angelo del Campo, M. D., Medialdea, L., García Laborde, P., García-Martínez, D., Bastir, M., González-José, R., González Martín, A., & Guichón, R. A. (2022). Intermethod error in geometric morphometric and the relevance of texturization and landmark marking. Revista Argentina De Antropología Biológica, 25(1), 057. https://doi.org/10.24215/18536387e057

Issue

Section

Original Articles

Most read articles by the same author(s)

> >>